Entropy-Based Coherence Metric for Land Applications of GNSS-R
A novel metric for detecting coherence in global navigation satellite system reflectometry (GNSS-R) signals is presented and evaluated. It applies the Von Neumann information entropy metric for density matrices, a powerful indicator of the degree of mixing between states, coherent and incoherent, of...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-13 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 60 |
creator | Russo, Ilaria Mara Bisceglie, Maurizio di Galdi, Carmela Lavalle, Marco Zuffada, Cinzia |
description | A novel metric for detecting coherence in global navigation satellite system reflectometry (GNSS-R) signals is presented and evaluated. It applies the Von Neumann information entropy metric for density matrices, a powerful indicator of the degree of mixing between states, coherent and incoherent, of the scene under investigation. The metric is applied to a set of raw IF data acquired by the cyclone global navigation satellite system (CYGNSS) observatories over Lake Okeechobee FL, in order to test the sensitivity of the entropy to different land cover types, including wetlands and open water. Visual comparison of results with Sentinel-1 images provides a first step in the validation of the effectiveness of entropy in detecting the presence of water covered by emergent vegetation. In addition, the entropy-based metric could be implemented on future space-based GNSS-R receivers to adapt the incoherent integration times to the observed scene, thus achieving an improvement in along-track resolution. |
doi_str_mv | 10.1109/TGRS.2021.3125858 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2021_3125858</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9605693</ieee_id><sourcerecordid>2629127340</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-1fd313685a1b93d3ac607c16540d78126dd75a56014e035f43a85121cb6924db3</originalsourceid><addsrcrecordid>eNo9kE1LAzEURYMoWKs_QNwEXE_Ny9ckG6GWWoWq0NZ1SJMMTqmTMZku-u87pcXV3Zz73uUgdA9kBED002q2WI4ooTBiQIUS6gINQAhVEMn5JRoQ0LKgStNrdJPzhhDgAsoBep42XYrtvnixOXg8iT8hhcYF_BG6VDtcxYTntvF43Lbb2tmujk3GscKzz-WyWNyiq8puc7g75xB9v05Xk7di_jV7n4znhWMcugIqz4BJJSysNfPMOklKB1Jw4ksFVHpfCitkvyoQJirOrBJAwa2lptyv2RA9nu62Kf7tQu7MJu5S0780VFINtGSc9BScKJdizilUpk31r017A8QcNZmjJnPUZM6a-s7DqVOHEP55LYmQmrED4Y9gmw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2629127340</pqid></control><display><type>article</type><title>Entropy-Based Coherence Metric for Land Applications of GNSS-R</title><source>IEEE Electronic Library (IEL)</source><creator>Russo, Ilaria Mara ; Bisceglie, Maurizio di ; Galdi, Carmela ; Lavalle, Marco ; Zuffada, Cinzia</creator><creatorcontrib>Russo, Ilaria Mara ; Bisceglie, Maurizio di ; Galdi, Carmela ; Lavalle, Marco ; Zuffada, Cinzia</creatorcontrib><description>A novel metric for detecting coherence in global navigation satellite system reflectometry (GNSS-R) signals is presented and evaluated. It applies the Von Neumann information entropy metric for density matrices, a powerful indicator of the degree of mixing between states, coherent and incoherent, of the scene under investigation. The metric is applied to a set of raw IF data acquired by the cyclone global navigation satellite system (CYGNSS) observatories over Lake Okeechobee FL, in order to test the sensitivity of the entropy to different land cover types, including wetlands and open water. Visual comparison of results with Sentinel-1 images provides a first step in the validation of the effectiveness of entropy in detecting the presence of water covered by emergent vegetation. In addition, the entropy-based metric could be implemented on future space-based GNSS-R receivers to adapt the incoherent integration times to the observed scene, thus achieving an improvement in along-track resolution.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2021.3125858</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bistatic scattering ; Coherence ; coherency ; cyclone global navigation satellite system (CYGNSS) ; Data acquisition ; eigenvalue decomposition ; Emergent aquatic plants ; Emergent vegetation ; Entropy ; Entropy (Information theory) ; Global navigation satellite system ; global navigation satellite system reflectometry (GNSS-R) ; Lakes ; Land cover ; Land surface ; Navigation ; Navigational satellites ; Observatories ; Rough surfaces ; Satellite observation ; Scattering ; Sea surface ; Sensitivity analysis ; Surface roughness ; Surface topography ; Wetlands</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-1fd313685a1b93d3ac607c16540d78126dd75a56014e035f43a85121cb6924db3</citedby><cites>FETCH-LOGICAL-c341t-1fd313685a1b93d3ac607c16540d78126dd75a56014e035f43a85121cb6924db3</cites><orcidid>0000-0003-0768-7151 ; 0000-0002-4941-5990 ; 0000-0002-9858-6454 ; 0000-0002-3096-122X ; 0000-0001-6280-5160</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9605693$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9605693$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Russo, Ilaria Mara</creatorcontrib><creatorcontrib>Bisceglie, Maurizio di</creatorcontrib><creatorcontrib>Galdi, Carmela</creatorcontrib><creatorcontrib>Lavalle, Marco</creatorcontrib><creatorcontrib>Zuffada, Cinzia</creatorcontrib><title>Entropy-Based Coherence Metric for Land Applications of GNSS-R</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>A novel metric for detecting coherence in global navigation satellite system reflectometry (GNSS-R) signals is presented and evaluated. It applies the Von Neumann information entropy metric for density matrices, a powerful indicator of the degree of mixing between states, coherent and incoherent, of the scene under investigation. The metric is applied to a set of raw IF data acquired by the cyclone global navigation satellite system (CYGNSS) observatories over Lake Okeechobee FL, in order to test the sensitivity of the entropy to different land cover types, including wetlands and open water. Visual comparison of results with Sentinel-1 images provides a first step in the validation of the effectiveness of entropy in detecting the presence of water covered by emergent vegetation. In addition, the entropy-based metric could be implemented on future space-based GNSS-R receivers to adapt the incoherent integration times to the observed scene, thus achieving an improvement in along-track resolution.</description><subject>Bistatic scattering</subject><subject>Coherence</subject><subject>coherency</subject><subject>cyclone global navigation satellite system (CYGNSS)</subject><subject>Data acquisition</subject><subject>eigenvalue decomposition</subject><subject>Emergent aquatic plants</subject><subject>Emergent vegetation</subject><subject>Entropy</subject><subject>Entropy (Information theory)</subject><subject>Global navigation satellite system</subject><subject>global navigation satellite system reflectometry (GNSS-R)</subject><subject>Lakes</subject><subject>Land cover</subject><subject>Land surface</subject><subject>Navigation</subject><subject>Navigational satellites</subject><subject>Observatories</subject><subject>Rough surfaces</subject><subject>Satellite observation</subject><subject>Scattering</subject><subject>Sea surface</subject><subject>Sensitivity analysis</subject><subject>Surface roughness</subject><subject>Surface topography</subject><subject>Wetlands</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEURYMoWKs_QNwEXE_Ny9ckG6GWWoWq0NZ1SJMMTqmTMZku-u87pcXV3Zz73uUgdA9kBED002q2WI4ooTBiQIUS6gINQAhVEMn5JRoQ0LKgStNrdJPzhhDgAsoBep42XYrtvnixOXg8iT8hhcYF_BG6VDtcxYTntvF43Lbb2tmujk3GscKzz-WyWNyiq8puc7g75xB9v05Xk7di_jV7n4znhWMcugIqz4BJJSysNfPMOklKB1Jw4ksFVHpfCitkvyoQJirOrBJAwa2lptyv2RA9nu62Kf7tQu7MJu5S0780VFINtGSc9BScKJdizilUpk31r017A8QcNZmjJnPUZM6a-s7DqVOHEP55LYmQmrED4Y9gmw</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Russo, Ilaria Mara</creator><creator>Bisceglie, Maurizio di</creator><creator>Galdi, Carmela</creator><creator>Lavalle, Marco</creator><creator>Zuffada, Cinzia</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0768-7151</orcidid><orcidid>https://orcid.org/0000-0002-4941-5990</orcidid><orcidid>https://orcid.org/0000-0002-9858-6454</orcidid><orcidid>https://orcid.org/0000-0002-3096-122X</orcidid><orcidid>https://orcid.org/0000-0001-6280-5160</orcidid></search><sort><creationdate>2022</creationdate><title>Entropy-Based Coherence Metric for Land Applications of GNSS-R</title><author>Russo, Ilaria Mara ; Bisceglie, Maurizio di ; Galdi, Carmela ; Lavalle, Marco ; Zuffada, Cinzia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-1fd313685a1b93d3ac607c16540d78126dd75a56014e035f43a85121cb6924db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bistatic scattering</topic><topic>Coherence</topic><topic>coherency</topic><topic>cyclone global navigation satellite system (CYGNSS)</topic><topic>Data acquisition</topic><topic>eigenvalue decomposition</topic><topic>Emergent aquatic plants</topic><topic>Emergent vegetation</topic><topic>Entropy</topic><topic>Entropy (Information theory)</topic><topic>Global navigation satellite system</topic><topic>global navigation satellite system reflectometry (GNSS-R)</topic><topic>Lakes</topic><topic>Land cover</topic><topic>Land surface</topic><topic>Navigation</topic><topic>Navigational satellites</topic><topic>Observatories</topic><topic>Rough surfaces</topic><topic>Satellite observation</topic><topic>Scattering</topic><topic>Sea surface</topic><topic>Sensitivity analysis</topic><topic>Surface roughness</topic><topic>Surface topography</topic><topic>Wetlands</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Russo, Ilaria Mara</creatorcontrib><creatorcontrib>Bisceglie, Maurizio di</creatorcontrib><creatorcontrib>Galdi, Carmela</creatorcontrib><creatorcontrib>Lavalle, Marco</creatorcontrib><creatorcontrib>Zuffada, Cinzia</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Russo, Ilaria Mara</au><au>Bisceglie, Maurizio di</au><au>Galdi, Carmela</au><au>Lavalle, Marco</au><au>Zuffada, Cinzia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Entropy-Based Coherence Metric for Land Applications of GNSS-R</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2022</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>A novel metric for detecting coherence in global navigation satellite system reflectometry (GNSS-R) signals is presented and evaluated. It applies the Von Neumann information entropy metric for density matrices, a powerful indicator of the degree of mixing between states, coherent and incoherent, of the scene under investigation. The metric is applied to a set of raw IF data acquired by the cyclone global navigation satellite system (CYGNSS) observatories over Lake Okeechobee FL, in order to test the sensitivity of the entropy to different land cover types, including wetlands and open water. Visual comparison of results with Sentinel-1 images provides a first step in the validation of the effectiveness of entropy in detecting the presence of water covered by emergent vegetation. In addition, the entropy-based metric could be implemented on future space-based GNSS-R receivers to adapt the incoherent integration times to the observed scene, thus achieving an improvement in along-track resolution.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2021.3125858</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0768-7151</orcidid><orcidid>https://orcid.org/0000-0002-4941-5990</orcidid><orcidid>https://orcid.org/0000-0002-9858-6454</orcidid><orcidid>https://orcid.org/0000-0002-3096-122X</orcidid><orcidid>https://orcid.org/0000-0001-6280-5160</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-13 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TGRS_2021_3125858 |
source | IEEE Electronic Library (IEL) |
subjects | Bistatic scattering Coherence coherency cyclone global navigation satellite system (CYGNSS) Data acquisition eigenvalue decomposition Emergent aquatic plants Emergent vegetation Entropy Entropy (Information theory) Global navigation satellite system global navigation satellite system reflectometry (GNSS-R) Lakes Land cover Land surface Navigation Navigational satellites Observatories Rough surfaces Satellite observation Scattering Sea surface Sensitivity analysis Surface roughness Surface topography Wetlands |
title | Entropy-Based Coherence Metric for Land Applications of GNSS-R |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A29%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Entropy-Based%20Coherence%20Metric%20for%20Land%20Applications%20of%20GNSS-R&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Russo,%20Ilaria%20Mara&rft.date=2022&rft.volume=60&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2021.3125858&rft_dat=%3Cproquest_RIE%3E2629127340%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2629127340&rft_id=info:pmid/&rft_ieee_id=9605693&rfr_iscdi=true |