Entropy-Based Coherence Metric for Land Applications of GNSS-R

A novel metric for detecting coherence in global navigation satellite system reflectometry (GNSS-R) signals is presented and evaluated. It applies the Von Neumann information entropy metric for density matrices, a powerful indicator of the degree of mixing between states, coherent and incoherent, of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-13
Hauptverfasser: Russo, Ilaria Mara, Bisceglie, Maurizio di, Galdi, Carmela, Lavalle, Marco, Zuffada, Cinzia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 60
creator Russo, Ilaria Mara
Bisceglie, Maurizio di
Galdi, Carmela
Lavalle, Marco
Zuffada, Cinzia
description A novel metric for detecting coherence in global navigation satellite system reflectometry (GNSS-R) signals is presented and evaluated. It applies the Von Neumann information entropy metric for density matrices, a powerful indicator of the degree of mixing between states, coherent and incoherent, of the scene under investigation. The metric is applied to a set of raw IF data acquired by the cyclone global navigation satellite system (CYGNSS) observatories over Lake Okeechobee FL, in order to test the sensitivity of the entropy to different land cover types, including wetlands and open water. Visual comparison of results with Sentinel-1 images provides a first step in the validation of the effectiveness of entropy in detecting the presence of water covered by emergent vegetation. In addition, the entropy-based metric could be implemented on future space-based GNSS-R receivers to adapt the incoherent integration times to the observed scene, thus achieving an improvement in along-track resolution.
doi_str_mv 10.1109/TGRS.2021.3125858
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2021_3125858</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9605693</ieee_id><sourcerecordid>2629127340</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-1fd313685a1b93d3ac607c16540d78126dd75a56014e035f43a85121cb6924db3</originalsourceid><addsrcrecordid>eNo9kE1LAzEURYMoWKs_QNwEXE_Ny9ckG6GWWoWq0NZ1SJMMTqmTMZku-u87pcXV3Zz73uUgdA9kBED002q2WI4ooTBiQIUS6gINQAhVEMn5JRoQ0LKgStNrdJPzhhDgAsoBep42XYrtvnixOXg8iT8hhcYF_BG6VDtcxYTntvF43Lbb2tmujk3GscKzz-WyWNyiq8puc7g75xB9v05Xk7di_jV7n4znhWMcugIqz4BJJSysNfPMOklKB1Jw4ksFVHpfCitkvyoQJirOrBJAwa2lptyv2RA9nu62Kf7tQu7MJu5S0780VFINtGSc9BScKJdizilUpk31r017A8QcNZmjJnPUZM6a-s7DqVOHEP55LYmQmrED4Y9gmw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2629127340</pqid></control><display><type>article</type><title>Entropy-Based Coherence Metric for Land Applications of GNSS-R</title><source>IEEE Electronic Library (IEL)</source><creator>Russo, Ilaria Mara ; Bisceglie, Maurizio di ; Galdi, Carmela ; Lavalle, Marco ; Zuffada, Cinzia</creator><creatorcontrib>Russo, Ilaria Mara ; Bisceglie, Maurizio di ; Galdi, Carmela ; Lavalle, Marco ; Zuffada, Cinzia</creatorcontrib><description>A novel metric for detecting coherence in global navigation satellite system reflectometry (GNSS-R) signals is presented and evaluated. It applies the Von Neumann information entropy metric for density matrices, a powerful indicator of the degree of mixing between states, coherent and incoherent, of the scene under investigation. The metric is applied to a set of raw IF data acquired by the cyclone global navigation satellite system (CYGNSS) observatories over Lake Okeechobee FL, in order to test the sensitivity of the entropy to different land cover types, including wetlands and open water. Visual comparison of results with Sentinel-1 images provides a first step in the validation of the effectiveness of entropy in detecting the presence of water covered by emergent vegetation. In addition, the entropy-based metric could be implemented on future space-based GNSS-R receivers to adapt the incoherent integration times to the observed scene, thus achieving an improvement in along-track resolution.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2021.3125858</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bistatic scattering ; Coherence ; coherency ; cyclone global navigation satellite system (CYGNSS) ; Data acquisition ; eigenvalue decomposition ; Emergent aquatic plants ; Emergent vegetation ; Entropy ; Entropy (Information theory) ; Global navigation satellite system ; global navigation satellite system reflectometry (GNSS-R) ; Lakes ; Land cover ; Land surface ; Navigation ; Navigational satellites ; Observatories ; Rough surfaces ; Satellite observation ; Scattering ; Sea surface ; Sensitivity analysis ; Surface roughness ; Surface topography ; Wetlands</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-1fd313685a1b93d3ac607c16540d78126dd75a56014e035f43a85121cb6924db3</citedby><cites>FETCH-LOGICAL-c341t-1fd313685a1b93d3ac607c16540d78126dd75a56014e035f43a85121cb6924db3</cites><orcidid>0000-0003-0768-7151 ; 0000-0002-4941-5990 ; 0000-0002-9858-6454 ; 0000-0002-3096-122X ; 0000-0001-6280-5160</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9605693$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9605693$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Russo, Ilaria Mara</creatorcontrib><creatorcontrib>Bisceglie, Maurizio di</creatorcontrib><creatorcontrib>Galdi, Carmela</creatorcontrib><creatorcontrib>Lavalle, Marco</creatorcontrib><creatorcontrib>Zuffada, Cinzia</creatorcontrib><title>Entropy-Based Coherence Metric for Land Applications of GNSS-R</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>A novel metric for detecting coherence in global navigation satellite system reflectometry (GNSS-R) signals is presented and evaluated. It applies the Von Neumann information entropy metric for density matrices, a powerful indicator of the degree of mixing between states, coherent and incoherent, of the scene under investigation. The metric is applied to a set of raw IF data acquired by the cyclone global navigation satellite system (CYGNSS) observatories over Lake Okeechobee FL, in order to test the sensitivity of the entropy to different land cover types, including wetlands and open water. Visual comparison of results with Sentinel-1 images provides a first step in the validation of the effectiveness of entropy in detecting the presence of water covered by emergent vegetation. In addition, the entropy-based metric could be implemented on future space-based GNSS-R receivers to adapt the incoherent integration times to the observed scene, thus achieving an improvement in along-track resolution.</description><subject>Bistatic scattering</subject><subject>Coherence</subject><subject>coherency</subject><subject>cyclone global navigation satellite system (CYGNSS)</subject><subject>Data acquisition</subject><subject>eigenvalue decomposition</subject><subject>Emergent aquatic plants</subject><subject>Emergent vegetation</subject><subject>Entropy</subject><subject>Entropy (Information theory)</subject><subject>Global navigation satellite system</subject><subject>global navigation satellite system reflectometry (GNSS-R)</subject><subject>Lakes</subject><subject>Land cover</subject><subject>Land surface</subject><subject>Navigation</subject><subject>Navigational satellites</subject><subject>Observatories</subject><subject>Rough surfaces</subject><subject>Satellite observation</subject><subject>Scattering</subject><subject>Sea surface</subject><subject>Sensitivity analysis</subject><subject>Surface roughness</subject><subject>Surface topography</subject><subject>Wetlands</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEURYMoWKs_QNwEXE_Ny9ckG6GWWoWq0NZ1SJMMTqmTMZku-u87pcXV3Zz73uUgdA9kBED002q2WI4ooTBiQIUS6gINQAhVEMn5JRoQ0LKgStNrdJPzhhDgAsoBep42XYrtvnixOXg8iT8hhcYF_BG6VDtcxYTntvF43Lbb2tmujk3GscKzz-WyWNyiq8puc7g75xB9v05Xk7di_jV7n4znhWMcugIqz4BJJSysNfPMOklKB1Jw4ksFVHpfCitkvyoQJirOrBJAwa2lptyv2RA9nu62Kf7tQu7MJu5S0780VFINtGSc9BScKJdizilUpk31r017A8QcNZmjJnPUZM6a-s7DqVOHEP55LYmQmrED4Y9gmw</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Russo, Ilaria Mara</creator><creator>Bisceglie, Maurizio di</creator><creator>Galdi, Carmela</creator><creator>Lavalle, Marco</creator><creator>Zuffada, Cinzia</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0768-7151</orcidid><orcidid>https://orcid.org/0000-0002-4941-5990</orcidid><orcidid>https://orcid.org/0000-0002-9858-6454</orcidid><orcidid>https://orcid.org/0000-0002-3096-122X</orcidid><orcidid>https://orcid.org/0000-0001-6280-5160</orcidid></search><sort><creationdate>2022</creationdate><title>Entropy-Based Coherence Metric for Land Applications of GNSS-R</title><author>Russo, Ilaria Mara ; Bisceglie, Maurizio di ; Galdi, Carmela ; Lavalle, Marco ; Zuffada, Cinzia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-1fd313685a1b93d3ac607c16540d78126dd75a56014e035f43a85121cb6924db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bistatic scattering</topic><topic>Coherence</topic><topic>coherency</topic><topic>cyclone global navigation satellite system (CYGNSS)</topic><topic>Data acquisition</topic><topic>eigenvalue decomposition</topic><topic>Emergent aquatic plants</topic><topic>Emergent vegetation</topic><topic>Entropy</topic><topic>Entropy (Information theory)</topic><topic>Global navigation satellite system</topic><topic>global navigation satellite system reflectometry (GNSS-R)</topic><topic>Lakes</topic><topic>Land cover</topic><topic>Land surface</topic><topic>Navigation</topic><topic>Navigational satellites</topic><topic>Observatories</topic><topic>Rough surfaces</topic><topic>Satellite observation</topic><topic>Scattering</topic><topic>Sea surface</topic><topic>Sensitivity analysis</topic><topic>Surface roughness</topic><topic>Surface topography</topic><topic>Wetlands</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Russo, Ilaria Mara</creatorcontrib><creatorcontrib>Bisceglie, Maurizio di</creatorcontrib><creatorcontrib>Galdi, Carmela</creatorcontrib><creatorcontrib>Lavalle, Marco</creatorcontrib><creatorcontrib>Zuffada, Cinzia</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Russo, Ilaria Mara</au><au>Bisceglie, Maurizio di</au><au>Galdi, Carmela</au><au>Lavalle, Marco</au><au>Zuffada, Cinzia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Entropy-Based Coherence Metric for Land Applications of GNSS-R</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2022</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>A novel metric for detecting coherence in global navigation satellite system reflectometry (GNSS-R) signals is presented and evaluated. It applies the Von Neumann information entropy metric for density matrices, a powerful indicator of the degree of mixing between states, coherent and incoherent, of the scene under investigation. The metric is applied to a set of raw IF data acquired by the cyclone global navigation satellite system (CYGNSS) observatories over Lake Okeechobee FL, in order to test the sensitivity of the entropy to different land cover types, including wetlands and open water. Visual comparison of results with Sentinel-1 images provides a first step in the validation of the effectiveness of entropy in detecting the presence of water covered by emergent vegetation. In addition, the entropy-based metric could be implemented on future space-based GNSS-R receivers to adapt the incoherent integration times to the observed scene, thus achieving an improvement in along-track resolution.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2021.3125858</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0768-7151</orcidid><orcidid>https://orcid.org/0000-0002-4941-5990</orcidid><orcidid>https://orcid.org/0000-0002-9858-6454</orcidid><orcidid>https://orcid.org/0000-0002-3096-122X</orcidid><orcidid>https://orcid.org/0000-0001-6280-5160</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-13
issn 0196-2892
1558-0644
language eng
recordid cdi_crossref_primary_10_1109_TGRS_2021_3125858
source IEEE Electronic Library (IEL)
subjects Bistatic scattering
Coherence
coherency
cyclone global navigation satellite system (CYGNSS)
Data acquisition
eigenvalue decomposition
Emergent aquatic plants
Emergent vegetation
Entropy
Entropy (Information theory)
Global navigation satellite system
global navigation satellite system reflectometry (GNSS-R)
Lakes
Land cover
Land surface
Navigation
Navigational satellites
Observatories
Rough surfaces
Satellite observation
Scattering
Sea surface
Sensitivity analysis
Surface roughness
Surface topography
Wetlands
title Entropy-Based Coherence Metric for Land Applications of GNSS-R
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A29%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Entropy-Based%20Coherence%20Metric%20for%20Land%20Applications%20of%20GNSS-R&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Russo,%20Ilaria%20Mara&rft.date=2022&rft.volume=60&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2021.3125858&rft_dat=%3Cproquest_RIE%3E2629127340%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2629127340&rft_id=info:pmid/&rft_ieee_id=9605693&rfr_iscdi=true