Multiscale Data-Driven Seismic Full-Waveform Inversion With Field Data Study

Seismic full-waveform inversion (FWI), which uses iterative methods to estimate high-resolution subsurface models from seismograms, is a powerful imaging technique in exploration geophysics. In recent years, the computational cost of FWI has grown exponentially due to the increasing size and resolut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-14
Hauptverfasser: Feng, Shihang, Lin, Youzuo, Wohlberg, Brendt
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 60
creator Feng, Shihang
Lin, Youzuo
Wohlberg, Brendt
description Seismic full-waveform inversion (FWI), which uses iterative methods to estimate high-resolution subsurface models from seismograms, is a powerful imaging technique in exploration geophysics. In recent years, the computational cost of FWI has grown exponentially due to the increasing size and resolution of seismic data. Moreover, it is a nonconvex problem and can encounter local minima due to the limited accuracy of the initial velocity models or the absence of low frequencies in the measurements. To overcome these computational issues, we develop a multiscale data-driven FWI method based on fully convolutional networks (FCNs). In preparing the training data, we first develop a real-time style transform method to create a large set of synthetic subsurface velocity models from natural images. We then develop two convolutional neural networks with encoder-decoder structures to reconstruct the low- and high-frequency components of the subsurface velocity models, separately. To validate the performance of our data-driven inversion method and the effectiveness of the synthesized training set, we compare it with conventional physics-based waveform inversion approaches using both synthetic and field data. These numerical results demonstrate that, once our model is fully trained, it can significantly reduce the computation time and yield more accurate subsurface velocity models in comparison with conventional FWI.
doi_str_mv 10.1109/TGRS.2021.3114101
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2021_3114101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9556631</ieee_id><sourcerecordid>2624756416</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-f6c76266bdd45b1e7f5c26992bee0bef07fd6273e2d9d5827d1ab2edb4f61243</originalsourceid><addsrcrecordid>eNo9kEFLw0AQRhdRsFZ_gHgJeE7d2exOmqO0thYigi30uCTZWdySJnU3KfTf29riaS7vfQOPsUfgIwCevazmX8uR4AJGCYAEDldsAEqNY45SXrMBhwxjMc7ELbsLYcM5SAXpgOUffd25UBU1RdOiK-Kpd3tqoiW5sHVVNOvrOl4Xe7Kt30aLZk8-uLaJ1q77jmaOavOnRcuuN4d7dmOLOtDD5Q7Zava2mrzH-ed8MXnN4ypJsIstVikKxNIYqUqg1KpKYJaJkoiXZHlqDYo0IWEyo8YiNVCUgkwpLYKQyZA9n2d3vv3pKXR60_a-OX7UAoVMFUrAIwVnqvJtCJ6s3nm3LfxBA9enZvrUTJ-a6Uuzo_N0dhwR_fOZUogJJL-X6mey</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624756416</pqid></control><display><type>article</type><title>Multiscale Data-Driven Seismic Full-Waveform Inversion With Field Data Study</title><source>IEEE Electronic Library (IEL)</source><creator>Feng, Shihang ; Lin, Youzuo ; Wohlberg, Brendt</creator><creatorcontrib>Feng, Shihang ; Lin, Youzuo ; Wohlberg, Brendt</creatorcontrib><description>Seismic full-waveform inversion (FWI), which uses iterative methods to estimate high-resolution subsurface models from seismograms, is a powerful imaging technique in exploration geophysics. In recent years, the computational cost of FWI has grown exponentially due to the increasing size and resolution of seismic data. Moreover, it is a nonconvex problem and can encounter local minima due to the limited accuracy of the initial velocity models or the absence of low frequencies in the measurements. To overcome these computational issues, we develop a multiscale data-driven FWI method based on fully convolutional networks (FCNs). In preparing the training data, we first develop a real-time style transform method to create a large set of synthetic subsurface velocity models from natural images. We then develop two convolutional neural networks with encoder-decoder structures to reconstruct the low- and high-frequency components of the subsurface velocity models, separately. To validate the performance of our data-driven inversion method and the effectiveness of the synthesized training set, we compare it with conventional physics-based waveform inversion approaches using both synthetic and field data. These numerical results demonstrate that, once our model is fully trained, it can significantly reduce the computation time and yield more accurate subsurface velocity models in comparison with conventional FWI.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2021.3114101</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Coders ; Computation ; Computational modeling ; Computer applications ; Computing costs ; Data augmentation ; Data models ; Geophysics ; Image reconstruction ; Imaging techniques ; Iterative methods ; Mathematical models ; multiscale analysis ; Neural networks ; Numerical models ; Physics ; Resolution ; scientific deep learning ; Seismic data ; seismic full-waveform inversion (FWI) ; Seismic surveys ; Seismograms ; style transfer ; Training ; Velocity ; Waveforms</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-f6c76266bdd45b1e7f5c26992bee0bef07fd6273e2d9d5827d1ab2edb4f61243</citedby><cites>FETCH-LOGICAL-c336t-f6c76266bdd45b1e7f5c26992bee0bef07fd6273e2d9d5827d1ab2edb4f61243</cites><orcidid>0000-0001-7337-6760 ; 0000-0003-4527-6329 ; 0000-0002-4767-1843</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9556631$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9556631$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Feng, Shihang</creatorcontrib><creatorcontrib>Lin, Youzuo</creatorcontrib><creatorcontrib>Wohlberg, Brendt</creatorcontrib><title>Multiscale Data-Driven Seismic Full-Waveform Inversion With Field Data Study</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Seismic full-waveform inversion (FWI), which uses iterative methods to estimate high-resolution subsurface models from seismograms, is a powerful imaging technique in exploration geophysics. In recent years, the computational cost of FWI has grown exponentially due to the increasing size and resolution of seismic data. Moreover, it is a nonconvex problem and can encounter local minima due to the limited accuracy of the initial velocity models or the absence of low frequencies in the measurements. To overcome these computational issues, we develop a multiscale data-driven FWI method based on fully convolutional networks (FCNs). In preparing the training data, we first develop a real-time style transform method to create a large set of synthetic subsurface velocity models from natural images. We then develop two convolutional neural networks with encoder-decoder structures to reconstruct the low- and high-frequency components of the subsurface velocity models, separately. To validate the performance of our data-driven inversion method and the effectiveness of the synthesized training set, we compare it with conventional physics-based waveform inversion approaches using both synthetic and field data. These numerical results demonstrate that, once our model is fully trained, it can significantly reduce the computation time and yield more accurate subsurface velocity models in comparison with conventional FWI.</description><subject>Artificial neural networks</subject><subject>Coders</subject><subject>Computation</subject><subject>Computational modeling</subject><subject>Computer applications</subject><subject>Computing costs</subject><subject>Data augmentation</subject><subject>Data models</subject><subject>Geophysics</subject><subject>Image reconstruction</subject><subject>Imaging techniques</subject><subject>Iterative methods</subject><subject>Mathematical models</subject><subject>multiscale analysis</subject><subject>Neural networks</subject><subject>Numerical models</subject><subject>Physics</subject><subject>Resolution</subject><subject>scientific deep learning</subject><subject>Seismic data</subject><subject>seismic full-waveform inversion (FWI)</subject><subject>Seismic surveys</subject><subject>Seismograms</subject><subject>style transfer</subject><subject>Training</subject><subject>Velocity</subject><subject>Waveforms</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLw0AQRhdRsFZ_gHgJeE7d2exOmqO0thYigi30uCTZWdySJnU3KfTf29riaS7vfQOPsUfgIwCevazmX8uR4AJGCYAEDldsAEqNY45SXrMBhwxjMc7ELbsLYcM5SAXpgOUffd25UBU1RdOiK-Kpd3tqoiW5sHVVNOvrOl4Xe7Kt30aLZk8-uLaJ1q77jmaOavOnRcuuN4d7dmOLOtDD5Q7Zava2mrzH-ed8MXnN4ypJsIstVikKxNIYqUqg1KpKYJaJkoiXZHlqDYo0IWEyo8YiNVCUgkwpLYKQyZA9n2d3vv3pKXR60_a-OX7UAoVMFUrAIwVnqvJtCJ6s3nm3LfxBA9enZvrUTJ-a6Uuzo_N0dhwR_fOZUogJJL-X6mey</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Feng, Shihang</creator><creator>Lin, Youzuo</creator><creator>Wohlberg, Brendt</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7337-6760</orcidid><orcidid>https://orcid.org/0000-0003-4527-6329</orcidid><orcidid>https://orcid.org/0000-0002-4767-1843</orcidid></search><sort><creationdate>2022</creationdate><title>Multiscale Data-Driven Seismic Full-Waveform Inversion With Field Data Study</title><author>Feng, Shihang ; Lin, Youzuo ; Wohlberg, Brendt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-f6c76266bdd45b1e7f5c26992bee0bef07fd6273e2d9d5827d1ab2edb4f61243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Coders</topic><topic>Computation</topic><topic>Computational modeling</topic><topic>Computer applications</topic><topic>Computing costs</topic><topic>Data augmentation</topic><topic>Data models</topic><topic>Geophysics</topic><topic>Image reconstruction</topic><topic>Imaging techniques</topic><topic>Iterative methods</topic><topic>Mathematical models</topic><topic>multiscale analysis</topic><topic>Neural networks</topic><topic>Numerical models</topic><topic>Physics</topic><topic>Resolution</topic><topic>scientific deep learning</topic><topic>Seismic data</topic><topic>seismic full-waveform inversion (FWI)</topic><topic>Seismic surveys</topic><topic>Seismograms</topic><topic>style transfer</topic><topic>Training</topic><topic>Velocity</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Shihang</creatorcontrib><creatorcontrib>Lin, Youzuo</creatorcontrib><creatorcontrib>Wohlberg, Brendt</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Feng, Shihang</au><au>Lin, Youzuo</au><au>Wohlberg, Brendt</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiscale Data-Driven Seismic Full-Waveform Inversion With Field Data Study</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2022</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Seismic full-waveform inversion (FWI), which uses iterative methods to estimate high-resolution subsurface models from seismograms, is a powerful imaging technique in exploration geophysics. In recent years, the computational cost of FWI has grown exponentially due to the increasing size and resolution of seismic data. Moreover, it is a nonconvex problem and can encounter local minima due to the limited accuracy of the initial velocity models or the absence of low frequencies in the measurements. To overcome these computational issues, we develop a multiscale data-driven FWI method based on fully convolutional networks (FCNs). In preparing the training data, we first develop a real-time style transform method to create a large set of synthetic subsurface velocity models from natural images. We then develop two convolutional neural networks with encoder-decoder structures to reconstruct the low- and high-frequency components of the subsurface velocity models, separately. To validate the performance of our data-driven inversion method and the effectiveness of the synthesized training set, we compare it with conventional physics-based waveform inversion approaches using both synthetic and field data. These numerical results demonstrate that, once our model is fully trained, it can significantly reduce the computation time and yield more accurate subsurface velocity models in comparison with conventional FWI.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2021.3114101</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7337-6760</orcidid><orcidid>https://orcid.org/0000-0003-4527-6329</orcidid><orcidid>https://orcid.org/0000-0002-4767-1843</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-14
issn 0196-2892
1558-0644
language eng
recordid cdi_crossref_primary_10_1109_TGRS_2021_3114101
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Coders
Computation
Computational modeling
Computer applications
Computing costs
Data augmentation
Data models
Geophysics
Image reconstruction
Imaging techniques
Iterative methods
Mathematical models
multiscale analysis
Neural networks
Numerical models
Physics
Resolution
scientific deep learning
Seismic data
seismic full-waveform inversion (FWI)
Seismic surveys
Seismograms
style transfer
Training
Velocity
Waveforms
title Multiscale Data-Driven Seismic Full-Waveform Inversion With Field Data Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T22%3A22%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiscale%20Data-Driven%20Seismic%20Full-Waveform%20Inversion%20With%20Field%20Data%20Study&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Feng,%20Shihang&rft.date=2022&rft.volume=60&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2021.3114101&rft_dat=%3Cproquest_RIE%3E2624756416%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2624756416&rft_id=info:pmid/&rft_ieee_id=9556631&rfr_iscdi=true