Three Integrating Methods for Gravity and Gravity Gradient 3-D Inversion and Their Comparison Based on a New Function of Discrete Stability
Integrated gravity and gravity gradient 3-D inversion can effectively improve the resolution of inversion results. This study aims to find a better way to extract geological information from gravity and gravity gradient data and to obtain the recovered model with a higher resolution. We present thre...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-12 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 60 |
creator | Qin, Pengbo Zhang, Chong Meng, Zhaohai Zhang, Dailei Hou, Zhenlong |
description | Integrated gravity and gravity gradient 3-D inversion can effectively improve the resolution of inversion results. This study aims to find a better way to extract geological information from gravity and gravity gradient data and to obtain the recovered model with a higher resolution. We present three different methods for integrating gravity and gravity gradient data in inversion: directly integrating gravity and gravity gradient data (DIGG), the sequential inversion of gravity and gravity gradient data (SIGG), and integrating gravity and gravity gradient components using a weighting matrix (IGGW). In addition, we propose a new discrete method for smooth inversion. We discretize the stabilizing functional into two parts. One is the square of the 2-norm of the model parameter, and the other one is the square of the Frobenius norm of the gradient of the model parameter. We adopt a conjugate gradient algorithm (CGA) to solve the objective function. We used the DIGG, SIGG, and IGGW inversion methods in a dip-slab model with multiple anomalous bodies. The inversion results show that by integrating gravity and gravity gradient in inversion, more reasonable results are obtained than by inverting a single data type. Among the presented methods, the IGGW method achieved the best performance in using information contained in gravity and gravity gradient data, followed by the SIGG method, and finally, by the DIGG method. We used the methods on actual data from Vinton salt dome, southwestern Louisiana, USA. The obtained results support the abovementioned conclusions. |
doi_str_mv | 10.1109/TGRS.2021.3108459 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2021_3108459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9537897</ieee_id><sourcerecordid>2624756567</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-e9e50adb833a77a3c1b6f8a9cba366b2bc3a515987591250198b7bf51db1f2223</originalsourceid><addsrcrecordid>eNo9kN1OwkAQhTdGExF9AOPNJl4X96fb7V4qCpKgJlKvm912Ckugxd0FwzP40rZCuJrJzHfOZA5Ct5QMKCXqIRt_zgaMMDrglKSxUGeoR4VII5LE8TnqEaqSiKWKXaIr75eE0FhQ2UO_2cIB4EkdYO50sPUcv0FYNKXHVePw2OmdDXus6_LUt7W0UAfMo-dWuAPnbVP_I9kCrMPDZr3Rzvp2-KQ9lLjb4nf4waNtXYQObir8bH3hIACeBW3sqnW-RheVXnm4OdY--hq9ZMPXaPoxngwfp1HBFA8RKBBElyblXEupeUFNUqVaFUbzJDHMFFwLKlQqhaJMtJ-nRppK0NLQijHG--j-4LtxzfcWfMiXzdbV7cmcJSyWIhGJbCl6oArXeO-gyjfOrrXb55TkXeZ5l3neZZ4fM281dweNBYATrwSXqZL8D0aTfig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624756567</pqid></control><display><type>article</type><title>Three Integrating Methods for Gravity and Gravity Gradient 3-D Inversion and Their Comparison Based on a New Function of Discrete Stability</title><source>IEEE Electronic Library (IEL)</source><creator>Qin, Pengbo ; Zhang, Chong ; Meng, Zhaohai ; Zhang, Dailei ; Hou, Zhenlong</creator><creatorcontrib>Qin, Pengbo ; Zhang, Chong ; Meng, Zhaohai ; Zhang, Dailei ; Hou, Zhenlong</creatorcontrib><description>Integrated gravity and gravity gradient 3-D inversion can effectively improve the resolution of inversion results. This study aims to find a better way to extract geological information from gravity and gravity gradient data and to obtain the recovered model with a higher resolution. We present three different methods for integrating gravity and gravity gradient data in inversion: directly integrating gravity and gravity gradient data (DIGG), the sequential inversion of gravity and gravity gradient data (SIGG), and integrating gravity and gravity gradient components using a weighting matrix (IGGW). In addition, we propose a new discrete method for smooth inversion. We discretize the stabilizing functional into two parts. One is the square of the 2-norm of the model parameter, and the other one is the square of the Frobenius norm of the gradient of the model parameter. We adopt a conjugate gradient algorithm (CGA) to solve the objective function. We used the DIGG, SIGG, and IGGW inversion methods in a dip-slab model with multiple anomalous bodies. The inversion results show that by integrating gravity and gravity gradient in inversion, more reasonable results are obtained than by inverting a single data type. Among the presented methods, the IGGW method achieved the best performance in using information contained in gravity and gravity gradient data, followed by the SIGG method, and finally, by the DIGG method. We used the methods on actual data from Vinton salt dome, southwestern Louisiana, USA. The obtained results support the abovementioned conclusions.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2021.3108459</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Conjugate gradient algorithm (CGA) ; Frobenius norm ; Geologic measurements ; Geology ; Geophysical measurements ; Gravity ; gravity gradient ; Information processing ; integrated inversion ; Linear programming ; Mathematical model ; Mathematical models ; Methods ; Objective function ; Parameters ; Resolution ; Salt domes ; Social networking (online) ; Stabilizing</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-12</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-e9e50adb833a77a3c1b6f8a9cba366b2bc3a515987591250198b7bf51db1f2223</citedby><cites>FETCH-LOGICAL-c293t-e9e50adb833a77a3c1b6f8a9cba366b2bc3a515987591250198b7bf51db1f2223</cites><orcidid>0000-0002-1180-1191 ; 0000-0002-0865-7504 ; 0000-0002-2933-5002</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9537897$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9537897$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Qin, Pengbo</creatorcontrib><creatorcontrib>Zhang, Chong</creatorcontrib><creatorcontrib>Meng, Zhaohai</creatorcontrib><creatorcontrib>Zhang, Dailei</creatorcontrib><creatorcontrib>Hou, Zhenlong</creatorcontrib><title>Three Integrating Methods for Gravity and Gravity Gradient 3-D Inversion and Their Comparison Based on a New Function of Discrete Stability</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Integrated gravity and gravity gradient 3-D inversion can effectively improve the resolution of inversion results. This study aims to find a better way to extract geological information from gravity and gravity gradient data and to obtain the recovered model with a higher resolution. We present three different methods for integrating gravity and gravity gradient data in inversion: directly integrating gravity and gravity gradient data (DIGG), the sequential inversion of gravity and gravity gradient data (SIGG), and integrating gravity and gravity gradient components using a weighting matrix (IGGW). In addition, we propose a new discrete method for smooth inversion. We discretize the stabilizing functional into two parts. One is the square of the 2-norm of the model parameter, and the other one is the square of the Frobenius norm of the gradient of the model parameter. We adopt a conjugate gradient algorithm (CGA) to solve the objective function. We used the DIGG, SIGG, and IGGW inversion methods in a dip-slab model with multiple anomalous bodies. The inversion results show that by integrating gravity and gravity gradient in inversion, more reasonable results are obtained than by inverting a single data type. Among the presented methods, the IGGW method achieved the best performance in using information contained in gravity and gravity gradient data, followed by the SIGG method, and finally, by the DIGG method. We used the methods on actual data from Vinton salt dome, southwestern Louisiana, USA. The obtained results support the abovementioned conclusions.</description><subject>Algorithms</subject><subject>Conjugate gradient algorithm (CGA)</subject><subject>Frobenius norm</subject><subject>Geologic measurements</subject><subject>Geology</subject><subject>Geophysical measurements</subject><subject>Gravity</subject><subject>gravity gradient</subject><subject>Information processing</subject><subject>integrated inversion</subject><subject>Linear programming</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Objective function</subject><subject>Parameters</subject><subject>Resolution</subject><subject>Salt domes</subject><subject>Social networking (online)</subject><subject>Stabilizing</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN1OwkAQhTdGExF9AOPNJl4X96fb7V4qCpKgJlKvm912Ckugxd0FwzP40rZCuJrJzHfOZA5Ct5QMKCXqIRt_zgaMMDrglKSxUGeoR4VII5LE8TnqEaqSiKWKXaIr75eE0FhQ2UO_2cIB4EkdYO50sPUcv0FYNKXHVePw2OmdDXus6_LUt7W0UAfMo-dWuAPnbVP_I9kCrMPDZr3Rzvp2-KQ9lLjb4nf4waNtXYQObir8bH3hIACeBW3sqnW-RheVXnm4OdY--hq9ZMPXaPoxngwfp1HBFA8RKBBElyblXEupeUFNUqVaFUbzJDHMFFwLKlQqhaJMtJ-nRppK0NLQijHG--j-4LtxzfcWfMiXzdbV7cmcJSyWIhGJbCl6oArXeO-gyjfOrrXb55TkXeZ5l3neZZ4fM281dweNBYATrwSXqZL8D0aTfig</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Qin, Pengbo</creator><creator>Zhang, Chong</creator><creator>Meng, Zhaohai</creator><creator>Zhang, Dailei</creator><creator>Hou, Zhenlong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1180-1191</orcidid><orcidid>https://orcid.org/0000-0002-0865-7504</orcidid><orcidid>https://orcid.org/0000-0002-2933-5002</orcidid></search><sort><creationdate>2022</creationdate><title>Three Integrating Methods for Gravity and Gravity Gradient 3-D Inversion and Their Comparison Based on a New Function of Discrete Stability</title><author>Qin, Pengbo ; Zhang, Chong ; Meng, Zhaohai ; Zhang, Dailei ; Hou, Zhenlong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-e9e50adb833a77a3c1b6f8a9cba366b2bc3a515987591250198b7bf51db1f2223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Conjugate gradient algorithm (CGA)</topic><topic>Frobenius norm</topic><topic>Geologic measurements</topic><topic>Geology</topic><topic>Geophysical measurements</topic><topic>Gravity</topic><topic>gravity gradient</topic><topic>Information processing</topic><topic>integrated inversion</topic><topic>Linear programming</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Objective function</topic><topic>Parameters</topic><topic>Resolution</topic><topic>Salt domes</topic><topic>Social networking (online)</topic><topic>Stabilizing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qin, Pengbo</creatorcontrib><creatorcontrib>Zhang, Chong</creatorcontrib><creatorcontrib>Meng, Zhaohai</creatorcontrib><creatorcontrib>Zhang, Dailei</creatorcontrib><creatorcontrib>Hou, Zhenlong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qin, Pengbo</au><au>Zhang, Chong</au><au>Meng, Zhaohai</au><au>Zhang, Dailei</au><au>Hou, Zhenlong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three Integrating Methods for Gravity and Gravity Gradient 3-D Inversion and Their Comparison Based on a New Function of Discrete Stability</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2022</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Integrated gravity and gravity gradient 3-D inversion can effectively improve the resolution of inversion results. This study aims to find a better way to extract geological information from gravity and gravity gradient data and to obtain the recovered model with a higher resolution. We present three different methods for integrating gravity and gravity gradient data in inversion: directly integrating gravity and gravity gradient data (DIGG), the sequential inversion of gravity and gravity gradient data (SIGG), and integrating gravity and gravity gradient components using a weighting matrix (IGGW). In addition, we propose a new discrete method for smooth inversion. We discretize the stabilizing functional into two parts. One is the square of the 2-norm of the model parameter, and the other one is the square of the Frobenius norm of the gradient of the model parameter. We adopt a conjugate gradient algorithm (CGA) to solve the objective function. We used the DIGG, SIGG, and IGGW inversion methods in a dip-slab model with multiple anomalous bodies. The inversion results show that by integrating gravity and gravity gradient in inversion, more reasonable results are obtained than by inverting a single data type. Among the presented methods, the IGGW method achieved the best performance in using information contained in gravity and gravity gradient data, followed by the SIGG method, and finally, by the DIGG method. We used the methods on actual data from Vinton salt dome, southwestern Louisiana, USA. The obtained results support the abovementioned conclusions.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2021.3108459</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1180-1191</orcidid><orcidid>https://orcid.org/0000-0002-0865-7504</orcidid><orcidid>https://orcid.org/0000-0002-2933-5002</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-12 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TGRS_2021_3108459 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Conjugate gradient algorithm (CGA) Frobenius norm Geologic measurements Geology Geophysical measurements Gravity gravity gradient Information processing integrated inversion Linear programming Mathematical model Mathematical models Methods Objective function Parameters Resolution Salt domes Social networking (online) Stabilizing |
title | Three Integrating Methods for Gravity and Gravity Gradient 3-D Inversion and Their Comparison Based on a New Function of Discrete Stability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A04%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three%20Integrating%20Methods%20for%20Gravity%20and%20Gravity%20Gradient%203-D%20Inversion%20and%20Their%20Comparison%20Based%20on%20a%20New%20Function%20of%20Discrete%20Stability&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Qin,%20Pengbo&rft.date=2022&rft.volume=60&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2021.3108459&rft_dat=%3Cproquest_RIE%3E2624756567%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2624756567&rft_id=info:pmid/&rft_ieee_id=9537897&rfr_iscdi=true |