PSCSC-Net: A Deep Coupled Convolutional Sparse Coding Network for Pansharpening
Given a low-resolution multispectral (MS) image and a high-resolution panchromatic image, the task of pansharpening is to generate a high-resolution MS image. Deep learning (DL)-based methods receive extensive attention recently. Different from the existing DL-based methods, this article proposes a...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-16 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 60 |
creator | Yin, Haitao |
description | Given a low-resolution multispectral (MS) image and a high-resolution panchromatic image, the task of pansharpening is to generate a high-resolution MS image. Deep learning (DL)-based methods receive extensive attention recently. Different from the existing DL-based methods, this article proposes a novel deep neural network for pansharpening inspired by the learned iterative soft thresholding algorithm. First, a coupled convolutional sparse coding-based pansharpening (PSCSC) model and related traditional optimization algorithm are proposed. Then, following the procedures of traditional algorithm for solving PSCSC, an interpretable end-to-end deep pansharpening network is developed using a deep unfolding strategy. The designed deep architecture can also be understood in the view of details injection (DI)-based scheme. This work offers a solution that integrates the DL-, DI-, and variational optimization-based schemes into a framework. The experimental results on the reduced- and full-scale datasets demonstrate that the proposed deep pansharpening network outperforms popular traditional methods and some current DL-based methods. |
doi_str_mv | 10.1109/TGRS.2021.3088313 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2021_3088313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9462797</ieee_id><sourcerecordid>2619018516</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-16878d66e0c4c38ee932a95f7c6a794abe5412a0bc09e136fb1c471b2f639cb3</originalsourceid><addsrcrecordid>eNo9kNFKwzAUhoMoOKcPIN4UvO7MSdo08U6qTmG4YXcf0uxUO2tTk1bx7e3Y8OqHc77_cPgIuQQ6A6DqZj1_LWaMMphxKiUHfkQmkKYypiJJjsmEghIxk4qdkrMQtpRCkkI2IctVkRd5_IL9bXQX3SN2Ue6GrsHNmO23a4a-dq1poqIzPuA43NTtWzTyP85_RJXz0cq04d34Dttxc05OKtMEvDjklKwfH9b5U7xYzp_zu0VsmeJ9DEJmciMEUptYLhEVZ0alVWaFyVRiSkwTYIaWlioELqoSbJJBySrBlS35lFzvz3befQ0Yer11gx__DJoJUBRkCmKkYE9Z70LwWOnO15_G_2qgeqdN77TpnTZ90DZ2rvadGhH_eZUIlqmM_wH-cmfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2619018516</pqid></control><display><type>article</type><title>PSCSC-Net: A Deep Coupled Convolutional Sparse Coding Network for Pansharpening</title><source>IEEE Xplore</source><creator>Yin, Haitao</creator><creatorcontrib>Yin, Haitao</creatorcontrib><description>Given a low-resolution multispectral (MS) image and a high-resolution panchromatic image, the task of pansharpening is to generate a high-resolution MS image. Deep learning (DL)-based methods receive extensive attention recently. Different from the existing DL-based methods, this article proposes a novel deep neural network for pansharpening inspired by the learned iterative soft thresholding algorithm. First, a coupled convolutional sparse coding-based pansharpening (PSCSC) model and related traditional optimization algorithm are proposed. Then, following the procedures of traditional algorithm for solving PSCSC, an interpretable end-to-end deep pansharpening network is developed using a deep unfolding strategy. The designed deep architecture can also be understood in the view of details injection (DI)-based scheme. This work offers a solution that integrates the DL-, DI-, and variational optimization-based schemes into a framework. The experimental results on the reduced- and full-scale datasets demonstrate that the proposed deep pansharpening network outperforms popular traditional methods and some current DL-based methods.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2021.3088313</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Coding ; Convolutional sparse coding (CSC) ; Deep learning ; deep neural network ; deep unfolding ; High resolution ; Image resolution ; Iterative algorithms ; Iterative methods ; Machine learning ; Neural networks ; Optimization ; Pansharpening ; Resolution ; Satellites ; Signal resolution ; Spatial resolution ; Training</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-16</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-16878d66e0c4c38ee932a95f7c6a794abe5412a0bc09e136fb1c471b2f639cb3</citedby><cites>FETCH-LOGICAL-c293t-16878d66e0c4c38ee932a95f7c6a794abe5412a0bc09e136fb1c471b2f639cb3</cites><orcidid>0000-0003-2975-2188</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9462797$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9462797$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yin, Haitao</creatorcontrib><title>PSCSC-Net: A Deep Coupled Convolutional Sparse Coding Network for Pansharpening</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Given a low-resolution multispectral (MS) image and a high-resolution panchromatic image, the task of pansharpening is to generate a high-resolution MS image. Deep learning (DL)-based methods receive extensive attention recently. Different from the existing DL-based methods, this article proposes a novel deep neural network for pansharpening inspired by the learned iterative soft thresholding algorithm. First, a coupled convolutional sparse coding-based pansharpening (PSCSC) model and related traditional optimization algorithm are proposed. Then, following the procedures of traditional algorithm for solving PSCSC, an interpretable end-to-end deep pansharpening network is developed using a deep unfolding strategy. The designed deep architecture can also be understood in the view of details injection (DI)-based scheme. This work offers a solution that integrates the DL-, DI-, and variational optimization-based schemes into a framework. The experimental results on the reduced- and full-scale datasets demonstrate that the proposed deep pansharpening network outperforms popular traditional methods and some current DL-based methods.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Coding</subject><subject>Convolutional sparse coding (CSC)</subject><subject>Deep learning</subject><subject>deep neural network</subject><subject>deep unfolding</subject><subject>High resolution</subject><subject>Image resolution</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Pansharpening</subject><subject>Resolution</subject><subject>Satellites</subject><subject>Signal resolution</subject><subject>Spatial resolution</subject><subject>Training</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNFKwzAUhoMoOKcPIN4UvO7MSdo08U6qTmG4YXcf0uxUO2tTk1bx7e3Y8OqHc77_cPgIuQQ6A6DqZj1_LWaMMphxKiUHfkQmkKYypiJJjsmEghIxk4qdkrMQtpRCkkI2IctVkRd5_IL9bXQX3SN2Ue6GrsHNmO23a4a-dq1poqIzPuA43NTtWzTyP85_RJXz0cq04d34Dttxc05OKtMEvDjklKwfH9b5U7xYzp_zu0VsmeJ9DEJmciMEUptYLhEVZ0alVWaFyVRiSkwTYIaWlioELqoSbJJBySrBlS35lFzvz3befQ0Yer11gx__DJoJUBRkCmKkYE9Z70LwWOnO15_G_2qgeqdN77TpnTZ90DZ2rvadGhH_eZUIlqmM_wH-cmfg</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Yin, Haitao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2975-2188</orcidid></search><sort><creationdate>2022</creationdate><title>PSCSC-Net: A Deep Coupled Convolutional Sparse Coding Network for Pansharpening</title><author>Yin, Haitao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-16878d66e0c4c38ee932a95f7c6a794abe5412a0bc09e136fb1c471b2f639cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Coding</topic><topic>Convolutional sparse coding (CSC)</topic><topic>Deep learning</topic><topic>deep neural network</topic><topic>deep unfolding</topic><topic>High resolution</topic><topic>Image resolution</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Pansharpening</topic><topic>Resolution</topic><topic>Satellites</topic><topic>Signal resolution</topic><topic>Spatial resolution</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Haitao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yin, Haitao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PSCSC-Net: A Deep Coupled Convolutional Sparse Coding Network for Pansharpening</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2022</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>16</epage><pages>1-16</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Given a low-resolution multispectral (MS) image and a high-resolution panchromatic image, the task of pansharpening is to generate a high-resolution MS image. Deep learning (DL)-based methods receive extensive attention recently. Different from the existing DL-based methods, this article proposes a novel deep neural network for pansharpening inspired by the learned iterative soft thresholding algorithm. First, a coupled convolutional sparse coding-based pansharpening (PSCSC) model and related traditional optimization algorithm are proposed. Then, following the procedures of traditional algorithm for solving PSCSC, an interpretable end-to-end deep pansharpening network is developed using a deep unfolding strategy. The designed deep architecture can also be understood in the view of details injection (DI)-based scheme. This work offers a solution that integrates the DL-, DI-, and variational optimization-based schemes into a framework. The experimental results on the reduced- and full-scale datasets demonstrate that the proposed deep pansharpening network outperforms popular traditional methods and some current DL-based methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2021.3088313</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-2975-2188</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-16 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TGRS_2021_3088313 |
source | IEEE Xplore |
subjects | Algorithms Artificial neural networks Coding Convolutional sparse coding (CSC) Deep learning deep neural network deep unfolding High resolution Image resolution Iterative algorithms Iterative methods Machine learning Neural networks Optimization Pansharpening Resolution Satellites Signal resolution Spatial resolution Training |
title | PSCSC-Net: A Deep Coupled Convolutional Sparse Coding Network for Pansharpening |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T08%3A54%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PSCSC-Net:%20A%20Deep%20Coupled%20Convolutional%20Sparse%20Coding%20Network%20for%20Pansharpening&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Yin,%20Haitao&rft.date=2022&rft.volume=60&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2021.3088313&rft_dat=%3Cproquest_RIE%3E2619018516%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2619018516&rft_id=info:pmid/&rft_ieee_id=9462797&rfr_iscdi=true |