PSCSC-Net: A Deep Coupled Convolutional Sparse Coding Network for Pansharpening

Given a low-resolution multispectral (MS) image and a high-resolution panchromatic image, the task of pansharpening is to generate a high-resolution MS image. Deep learning (DL)-based methods receive extensive attention recently. Different from the existing DL-based methods, this article proposes a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-16
1. Verfasser: Yin, Haitao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 60
creator Yin, Haitao
description Given a low-resolution multispectral (MS) image and a high-resolution panchromatic image, the task of pansharpening is to generate a high-resolution MS image. Deep learning (DL)-based methods receive extensive attention recently. Different from the existing DL-based methods, this article proposes a novel deep neural network for pansharpening inspired by the learned iterative soft thresholding algorithm. First, a coupled convolutional sparse coding-based pansharpening (PSCSC) model and related traditional optimization algorithm are proposed. Then, following the procedures of traditional algorithm for solving PSCSC, an interpretable end-to-end deep pansharpening network is developed using a deep unfolding strategy. The designed deep architecture can also be understood in the view of details injection (DI)-based scheme. This work offers a solution that integrates the DL-, DI-, and variational optimization-based schemes into a framework. The experimental results on the reduced- and full-scale datasets demonstrate that the proposed deep pansharpening network outperforms popular traditional methods and some current DL-based methods.
doi_str_mv 10.1109/TGRS.2021.3088313
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2021_3088313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9462797</ieee_id><sourcerecordid>2619018516</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-16878d66e0c4c38ee932a95f7c6a794abe5412a0bc09e136fb1c471b2f639cb3</originalsourceid><addsrcrecordid>eNo9kNFKwzAUhoMoOKcPIN4UvO7MSdo08U6qTmG4YXcf0uxUO2tTk1bx7e3Y8OqHc77_cPgIuQQ6A6DqZj1_LWaMMphxKiUHfkQmkKYypiJJjsmEghIxk4qdkrMQtpRCkkI2IctVkRd5_IL9bXQX3SN2Ue6GrsHNmO23a4a-dq1poqIzPuA43NTtWzTyP85_RJXz0cq04d34Dttxc05OKtMEvDjklKwfH9b5U7xYzp_zu0VsmeJ9DEJmciMEUptYLhEVZ0alVWaFyVRiSkwTYIaWlioELqoSbJJBySrBlS35lFzvz3befQ0Yer11gx__DJoJUBRkCmKkYE9Z70LwWOnO15_G_2qgeqdN77TpnTZ90DZ2rvadGhH_eZUIlqmM_wH-cmfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2619018516</pqid></control><display><type>article</type><title>PSCSC-Net: A Deep Coupled Convolutional Sparse Coding Network for Pansharpening</title><source>IEEE Xplore</source><creator>Yin, Haitao</creator><creatorcontrib>Yin, Haitao</creatorcontrib><description>Given a low-resolution multispectral (MS) image and a high-resolution panchromatic image, the task of pansharpening is to generate a high-resolution MS image. Deep learning (DL)-based methods receive extensive attention recently. Different from the existing DL-based methods, this article proposes a novel deep neural network for pansharpening inspired by the learned iterative soft thresholding algorithm. First, a coupled convolutional sparse coding-based pansharpening (PSCSC) model and related traditional optimization algorithm are proposed. Then, following the procedures of traditional algorithm for solving PSCSC, an interpretable end-to-end deep pansharpening network is developed using a deep unfolding strategy. The designed deep architecture can also be understood in the view of details injection (DI)-based scheme. This work offers a solution that integrates the DL-, DI-, and variational optimization-based schemes into a framework. The experimental results on the reduced- and full-scale datasets demonstrate that the proposed deep pansharpening network outperforms popular traditional methods and some current DL-based methods.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2021.3088313</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Coding ; Convolutional sparse coding (CSC) ; Deep learning ; deep neural network ; deep unfolding ; High resolution ; Image resolution ; Iterative algorithms ; Iterative methods ; Machine learning ; Neural networks ; Optimization ; Pansharpening ; Resolution ; Satellites ; Signal resolution ; Spatial resolution ; Training</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-16</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-16878d66e0c4c38ee932a95f7c6a794abe5412a0bc09e136fb1c471b2f639cb3</citedby><cites>FETCH-LOGICAL-c293t-16878d66e0c4c38ee932a95f7c6a794abe5412a0bc09e136fb1c471b2f639cb3</cites><orcidid>0000-0003-2975-2188</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9462797$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9462797$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yin, Haitao</creatorcontrib><title>PSCSC-Net: A Deep Coupled Convolutional Sparse Coding Network for Pansharpening</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Given a low-resolution multispectral (MS) image and a high-resolution panchromatic image, the task of pansharpening is to generate a high-resolution MS image. Deep learning (DL)-based methods receive extensive attention recently. Different from the existing DL-based methods, this article proposes a novel deep neural network for pansharpening inspired by the learned iterative soft thresholding algorithm. First, a coupled convolutional sparse coding-based pansharpening (PSCSC) model and related traditional optimization algorithm are proposed. Then, following the procedures of traditional algorithm for solving PSCSC, an interpretable end-to-end deep pansharpening network is developed using a deep unfolding strategy. The designed deep architecture can also be understood in the view of details injection (DI)-based scheme. This work offers a solution that integrates the DL-, DI-, and variational optimization-based schemes into a framework. The experimental results on the reduced- and full-scale datasets demonstrate that the proposed deep pansharpening network outperforms popular traditional methods and some current DL-based methods.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Coding</subject><subject>Convolutional sparse coding (CSC)</subject><subject>Deep learning</subject><subject>deep neural network</subject><subject>deep unfolding</subject><subject>High resolution</subject><subject>Image resolution</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Pansharpening</subject><subject>Resolution</subject><subject>Satellites</subject><subject>Signal resolution</subject><subject>Spatial resolution</subject><subject>Training</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNFKwzAUhoMoOKcPIN4UvO7MSdo08U6qTmG4YXcf0uxUO2tTk1bx7e3Y8OqHc77_cPgIuQQ6A6DqZj1_LWaMMphxKiUHfkQmkKYypiJJjsmEghIxk4qdkrMQtpRCkkI2IctVkRd5_IL9bXQX3SN2Ue6GrsHNmO23a4a-dq1poqIzPuA43NTtWzTyP85_RJXz0cq04d34Dttxc05OKtMEvDjklKwfH9b5U7xYzp_zu0VsmeJ9DEJmciMEUptYLhEVZ0alVWaFyVRiSkwTYIaWlioELqoSbJJBySrBlS35lFzvz3befQ0Yer11gx__DJoJUBRkCmKkYE9Z70LwWOnO15_G_2qgeqdN77TpnTZ90DZ2rvadGhH_eZUIlqmM_wH-cmfg</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Yin, Haitao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2975-2188</orcidid></search><sort><creationdate>2022</creationdate><title>PSCSC-Net: A Deep Coupled Convolutional Sparse Coding Network for Pansharpening</title><author>Yin, Haitao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-16878d66e0c4c38ee932a95f7c6a794abe5412a0bc09e136fb1c471b2f639cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Coding</topic><topic>Convolutional sparse coding (CSC)</topic><topic>Deep learning</topic><topic>deep neural network</topic><topic>deep unfolding</topic><topic>High resolution</topic><topic>Image resolution</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Pansharpening</topic><topic>Resolution</topic><topic>Satellites</topic><topic>Signal resolution</topic><topic>Spatial resolution</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Haitao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yin, Haitao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PSCSC-Net: A Deep Coupled Convolutional Sparse Coding Network for Pansharpening</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2022</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>16</epage><pages>1-16</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Given a low-resolution multispectral (MS) image and a high-resolution panchromatic image, the task of pansharpening is to generate a high-resolution MS image. Deep learning (DL)-based methods receive extensive attention recently. Different from the existing DL-based methods, this article proposes a novel deep neural network for pansharpening inspired by the learned iterative soft thresholding algorithm. First, a coupled convolutional sparse coding-based pansharpening (PSCSC) model and related traditional optimization algorithm are proposed. Then, following the procedures of traditional algorithm for solving PSCSC, an interpretable end-to-end deep pansharpening network is developed using a deep unfolding strategy. The designed deep architecture can also be understood in the view of details injection (DI)-based scheme. This work offers a solution that integrates the DL-, DI-, and variational optimization-based schemes into a framework. The experimental results on the reduced- and full-scale datasets demonstrate that the proposed deep pansharpening network outperforms popular traditional methods and some current DL-based methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2021.3088313</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-2975-2188</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-16
issn 0196-2892
1558-0644
language eng
recordid cdi_crossref_primary_10_1109_TGRS_2021_3088313
source IEEE Xplore
subjects Algorithms
Artificial neural networks
Coding
Convolutional sparse coding (CSC)
Deep learning
deep neural network
deep unfolding
High resolution
Image resolution
Iterative algorithms
Iterative methods
Machine learning
Neural networks
Optimization
Pansharpening
Resolution
Satellites
Signal resolution
Spatial resolution
Training
title PSCSC-Net: A Deep Coupled Convolutional Sparse Coding Network for Pansharpening
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T08%3A54%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PSCSC-Net:%20A%20Deep%20Coupled%20Convolutional%20Sparse%20Coding%20Network%20for%20Pansharpening&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Yin,%20Haitao&rft.date=2022&rft.volume=60&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2021.3088313&rft_dat=%3Cproquest_RIE%3E2619018516%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2619018516&rft_id=info:pmid/&rft_ieee_id=9462797&rfr_iscdi=true