Joint Inversion of Multiphysical Parameters Based on a Combination of Cosine Dot-Gradient and Joint Total Variation Constraints

The joint inversion of structural constraints is a new and rapidly developing detection technology in comprehensive geophysical interpretation. In this article, a new structural constraint 2-D multiphysical parameter joint inversion algorithm for magnetotelluric (MT), gravity, and magnetic data is d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-10
Hauptverfasser: Zhang, Rongzhe, Li, Tonglin, Liu, Cai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 60
creator Zhang, Rongzhe
Li, Tonglin
Liu, Cai
description The joint inversion of structural constraints is a new and rapidly developing detection technology in comprehensive geophysical interpretation. In this article, a new structural constraint 2-D multiphysical parameter joint inversion algorithm for magnetotelluric (MT), gravity, and magnetic data is developed. The structural constraint term is a combination of cosine dot-gradient (CDG) and joint total variation (JTV) constraints, which not only has characteristics of traditional dot product and cross-gradient structure constraints but also avoids the uncertainty of dot product constraints predicting the gradient direction of the model parameters, overcomes the need for high-order differential approximation of the cross-gradient constraint, ignores the influence of the gradient amplitude of different model parameters on the weight of the structural constraint of different regions, and enhances the reconstruction accuracy of the underground discontinuous interface. To more easily combine multiple optimization algorithms to improve the resolution and computational efficiency of joint inversion, an adaptive inexact structural resemblance (IESR) algorithm is developed to minimize numerical solutions to the objective function. Experimental results have demonstrated that the CDG constraint has a wider use range than the traditional structural constraint, the addition of the JTV constraint can recover the underground discontinuous interface, and an inversion result of higher resolution can be obtained using the adaptive IESR algorithm.
doi_str_mv 10.1109/TGRS.2021.3071498
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2021_3071498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9409662</ieee_id><sourcerecordid>2612467251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-e2b9ee6bf924c96414ff32e0b12ed7562d9e27942448129e44daf8c1de51d9803</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOKc_QHwJ-NyZm6Zp86hV52Si6PS1pO0tRrZmJpmwJ_-6GR0-3YdzznfhI-Qc2ASAqavF9PVtwhmHScpyEKo4ICPIsiJhUohDMmKgZMILxY_JifdfjIHIIB-R30dr-kBn_Q86b2xPbUefNstg1p9bbxq9pC_a6RWGGNMb7bGlsaRpaVe16XXYT0rrTY_01oZk6nRrMDJ139KBvrAhgj60M8OgtL0PTsfIn5KjTi89nu3vmLzf3y3Kh2T-PJ2V1_OkSQWEBHmtEGXdKS4aJQWIrks5sho4tnkmeauQ50pwIQrgCoVodVc00GIGrSpYOiaXA3ft7PcGfai-7Mb18WXFJXAhc55BbMHQapz13mFXrZ1ZabetgFU7z9XOc7XzXO09x83FsDGI-N9XgikpefoHjap6mA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612467251</pqid></control><display><type>article</type><title>Joint Inversion of Multiphysical Parameters Based on a Combination of Cosine Dot-Gradient and Joint Total Variation Constraints</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Rongzhe ; Li, Tonglin ; Liu, Cai</creator><creatorcontrib>Zhang, Rongzhe ; Li, Tonglin ; Liu, Cai</creatorcontrib><description>The joint inversion of structural constraints is a new and rapidly developing detection technology in comprehensive geophysical interpretation. In this article, a new structural constraint 2-D multiphysical parameter joint inversion algorithm for magnetotelluric (MT), gravity, and magnetic data is developed. The structural constraint term is a combination of cosine dot-gradient (CDG) and joint total variation (JTV) constraints, which not only has characteristics of traditional dot product and cross-gradient structure constraints but also avoids the uncertainty of dot product constraints predicting the gradient direction of the model parameters, overcomes the need for high-order differential approximation of the cross-gradient constraint, ignores the influence of the gradient amplitude of different model parameters on the weight of the structural constraint of different regions, and enhances the reconstruction accuracy of the underground discontinuous interface. To more easily combine multiple optimization algorithms to improve the resolution and computational efficiency of joint inversion, an adaptive inexact structural resemblance (IESR) algorithm is developed to minimize numerical solutions to the objective function. Experimental results have demonstrated that the CDG constraint has a wider use range than the traditional structural constraint, the addition of the JTV constraint can recover the underground discontinuous interface, and an inversion result of higher resolution can be obtained using the adaptive IESR algorithm.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2021.3071498</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive algorithms ; Algorithms ; Approximation ; Computer applications ; Correlation ; Cosine dot-gradient (CDG) ; Couplings ; Gravity ; inexact structural resemblance (IESR) algorithm ; Jacobian matrices ; joint inversion ; joint total variation (JTV) ; Linear programming ; Magnetic data ; Mathematical model ; Mathematical models ; multiphysical parameter ; Objective function ; Optimization ; Parameters ; Resolution ; Rocks ; Uncertainty</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-10</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-e2b9ee6bf924c96414ff32e0b12ed7562d9e27942448129e44daf8c1de51d9803</citedby><cites>FETCH-LOGICAL-c341t-e2b9ee6bf924c96414ff32e0b12ed7562d9e27942448129e44daf8c1de51d9803</cites><orcidid>0000-0001-7870-2238</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9409662$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9409662$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Rongzhe</creatorcontrib><creatorcontrib>Li, Tonglin</creatorcontrib><creatorcontrib>Liu, Cai</creatorcontrib><title>Joint Inversion of Multiphysical Parameters Based on a Combination of Cosine Dot-Gradient and Joint Total Variation Constraints</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>The joint inversion of structural constraints is a new and rapidly developing detection technology in comprehensive geophysical interpretation. In this article, a new structural constraint 2-D multiphysical parameter joint inversion algorithm for magnetotelluric (MT), gravity, and magnetic data is developed. The structural constraint term is a combination of cosine dot-gradient (CDG) and joint total variation (JTV) constraints, which not only has characteristics of traditional dot product and cross-gradient structure constraints but also avoids the uncertainty of dot product constraints predicting the gradient direction of the model parameters, overcomes the need for high-order differential approximation of the cross-gradient constraint, ignores the influence of the gradient amplitude of different model parameters on the weight of the structural constraint of different regions, and enhances the reconstruction accuracy of the underground discontinuous interface. To more easily combine multiple optimization algorithms to improve the resolution and computational efficiency of joint inversion, an adaptive inexact structural resemblance (IESR) algorithm is developed to minimize numerical solutions to the objective function. Experimental results have demonstrated that the CDG constraint has a wider use range than the traditional structural constraint, the addition of the JTV constraint can recover the underground discontinuous interface, and an inversion result of higher resolution can be obtained using the adaptive IESR algorithm.</description><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Computer applications</subject><subject>Correlation</subject><subject>Cosine dot-gradient (CDG)</subject><subject>Couplings</subject><subject>Gravity</subject><subject>inexact structural resemblance (IESR) algorithm</subject><subject>Jacobian matrices</subject><subject>joint inversion</subject><subject>joint total variation (JTV)</subject><subject>Linear programming</subject><subject>Magnetic data</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>multiphysical parameter</subject><subject>Objective function</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Resolution</subject><subject>Rocks</subject><subject>Uncertainty</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFLwzAUhYMoOKc_QHwJ-NyZm6Zp86hV52Si6PS1pO0tRrZmJpmwJ_-6GR0-3YdzznfhI-Qc2ASAqavF9PVtwhmHScpyEKo4ICPIsiJhUohDMmKgZMILxY_JifdfjIHIIB-R30dr-kBn_Q86b2xPbUefNstg1p9bbxq9pC_a6RWGGNMb7bGlsaRpaVe16XXYT0rrTY_01oZk6nRrMDJ139KBvrAhgj60M8OgtL0PTsfIn5KjTi89nu3vmLzf3y3Kh2T-PJ2V1_OkSQWEBHmtEGXdKS4aJQWIrks5sho4tnkmeauQ50pwIQrgCoVodVc00GIGrSpYOiaXA3ft7PcGfai-7Mb18WXFJXAhc55BbMHQapz13mFXrZ1ZabetgFU7z9XOc7XzXO09x83FsDGI-N9XgikpefoHjap6mA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Zhang, Rongzhe</creator><creator>Li, Tonglin</creator><creator>Liu, Cai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7870-2238</orcidid></search><sort><creationdate>2022</creationdate><title>Joint Inversion of Multiphysical Parameters Based on a Combination of Cosine Dot-Gradient and Joint Total Variation Constraints</title><author>Zhang, Rongzhe ; Li, Tonglin ; Liu, Cai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-e2b9ee6bf924c96414ff32e0b12ed7562d9e27942448129e44daf8c1de51d9803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Computer applications</topic><topic>Correlation</topic><topic>Cosine dot-gradient (CDG)</topic><topic>Couplings</topic><topic>Gravity</topic><topic>inexact structural resemblance (IESR) algorithm</topic><topic>Jacobian matrices</topic><topic>joint inversion</topic><topic>joint total variation (JTV)</topic><topic>Linear programming</topic><topic>Magnetic data</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>multiphysical parameter</topic><topic>Objective function</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Resolution</topic><topic>Rocks</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Rongzhe</creatorcontrib><creatorcontrib>Li, Tonglin</creatorcontrib><creatorcontrib>Liu, Cai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Rongzhe</au><au>Li, Tonglin</au><au>Liu, Cai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint Inversion of Multiphysical Parameters Based on a Combination of Cosine Dot-Gradient and Joint Total Variation Constraints</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2022</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>The joint inversion of structural constraints is a new and rapidly developing detection technology in comprehensive geophysical interpretation. In this article, a new structural constraint 2-D multiphysical parameter joint inversion algorithm for magnetotelluric (MT), gravity, and magnetic data is developed. The structural constraint term is a combination of cosine dot-gradient (CDG) and joint total variation (JTV) constraints, which not only has characteristics of traditional dot product and cross-gradient structure constraints but also avoids the uncertainty of dot product constraints predicting the gradient direction of the model parameters, overcomes the need for high-order differential approximation of the cross-gradient constraint, ignores the influence of the gradient amplitude of different model parameters on the weight of the structural constraint of different regions, and enhances the reconstruction accuracy of the underground discontinuous interface. To more easily combine multiple optimization algorithms to improve the resolution and computational efficiency of joint inversion, an adaptive inexact structural resemblance (IESR) algorithm is developed to minimize numerical solutions to the objective function. Experimental results have demonstrated that the CDG constraint has a wider use range than the traditional structural constraint, the addition of the JTV constraint can recover the underground discontinuous interface, and an inversion result of higher resolution can be obtained using the adaptive IESR algorithm.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2021.3071498</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7870-2238</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-10
issn 0196-2892
1558-0644
language eng
recordid cdi_crossref_primary_10_1109_TGRS_2021_3071498
source IEEE Electronic Library (IEL)
subjects Adaptive algorithms
Algorithms
Approximation
Computer applications
Correlation
Cosine dot-gradient (CDG)
Couplings
Gravity
inexact structural resemblance (IESR) algorithm
Jacobian matrices
joint inversion
joint total variation (JTV)
Linear programming
Magnetic data
Mathematical model
Mathematical models
multiphysical parameter
Objective function
Optimization
Parameters
Resolution
Rocks
Uncertainty
title Joint Inversion of Multiphysical Parameters Based on a Combination of Cosine Dot-Gradient and Joint Total Variation Constraints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A43%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20Inversion%20of%20Multiphysical%20Parameters%20Based%20on%20a%20Combination%20of%20Cosine%20Dot-Gradient%20and%20Joint%20Total%20Variation%20Constraints&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Zhang,%20Rongzhe&rft.date=2022&rft.volume=60&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2021.3071498&rft_dat=%3Cproquest_RIE%3E2612467251%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2612467251&rft_id=info:pmid/&rft_ieee_id=9409662&rfr_iscdi=true