Joint Inversion of Multiphysical Parameters Based on a Combination of Cosine Dot-Gradient and Joint Total Variation Constraints
The joint inversion of structural constraints is a new and rapidly developing detection technology in comprehensive geophysical interpretation. In this article, a new structural constraint 2-D multiphysical parameter joint inversion algorithm for magnetotelluric (MT), gravity, and magnetic data is d...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-10 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 60 |
creator | Zhang, Rongzhe Li, Tonglin Liu, Cai |
description | The joint inversion of structural constraints is a new and rapidly developing detection technology in comprehensive geophysical interpretation. In this article, a new structural constraint 2-D multiphysical parameter joint inversion algorithm for magnetotelluric (MT), gravity, and magnetic data is developed. The structural constraint term is a combination of cosine dot-gradient (CDG) and joint total variation (JTV) constraints, which not only has characteristics of traditional dot product and cross-gradient structure constraints but also avoids the uncertainty of dot product constraints predicting the gradient direction of the model parameters, overcomes the need for high-order differential approximation of the cross-gradient constraint, ignores the influence of the gradient amplitude of different model parameters on the weight of the structural constraint of different regions, and enhances the reconstruction accuracy of the underground discontinuous interface. To more easily combine multiple optimization algorithms to improve the resolution and computational efficiency of joint inversion, an adaptive inexact structural resemblance (IESR) algorithm is developed to minimize numerical solutions to the objective function. Experimental results have demonstrated that the CDG constraint has a wider use range than the traditional structural constraint, the addition of the JTV constraint can recover the underground discontinuous interface, and an inversion result of higher resolution can be obtained using the adaptive IESR algorithm. |
doi_str_mv | 10.1109/TGRS.2021.3071498 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2021_3071498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9409662</ieee_id><sourcerecordid>2612467251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-e2b9ee6bf924c96414ff32e0b12ed7562d9e27942448129e44daf8c1de51d9803</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOKc_QHwJ-NyZm6Zp86hV52Si6PS1pO0tRrZmJpmwJ_-6GR0-3YdzznfhI-Qc2ASAqavF9PVtwhmHScpyEKo4ICPIsiJhUohDMmKgZMILxY_JifdfjIHIIB-R30dr-kBn_Q86b2xPbUefNstg1p9bbxq9pC_a6RWGGNMb7bGlsaRpaVe16XXYT0rrTY_01oZk6nRrMDJ139KBvrAhgj60M8OgtL0PTsfIn5KjTi89nu3vmLzf3y3Kh2T-PJ2V1_OkSQWEBHmtEGXdKS4aJQWIrks5sho4tnkmeauQ50pwIQrgCoVodVc00GIGrSpYOiaXA3ft7PcGfai-7Mb18WXFJXAhc55BbMHQapz13mFXrZ1ZabetgFU7z9XOc7XzXO09x83FsDGI-N9XgikpefoHjap6mA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612467251</pqid></control><display><type>article</type><title>Joint Inversion of Multiphysical Parameters Based on a Combination of Cosine Dot-Gradient and Joint Total Variation Constraints</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Rongzhe ; Li, Tonglin ; Liu, Cai</creator><creatorcontrib>Zhang, Rongzhe ; Li, Tonglin ; Liu, Cai</creatorcontrib><description>The joint inversion of structural constraints is a new and rapidly developing detection technology in comprehensive geophysical interpretation. In this article, a new structural constraint 2-D multiphysical parameter joint inversion algorithm for magnetotelluric (MT), gravity, and magnetic data is developed. The structural constraint term is a combination of cosine dot-gradient (CDG) and joint total variation (JTV) constraints, which not only has characteristics of traditional dot product and cross-gradient structure constraints but also avoids the uncertainty of dot product constraints predicting the gradient direction of the model parameters, overcomes the need for high-order differential approximation of the cross-gradient constraint, ignores the influence of the gradient amplitude of different model parameters on the weight of the structural constraint of different regions, and enhances the reconstruction accuracy of the underground discontinuous interface. To more easily combine multiple optimization algorithms to improve the resolution and computational efficiency of joint inversion, an adaptive inexact structural resemblance (IESR) algorithm is developed to minimize numerical solutions to the objective function. Experimental results have demonstrated that the CDG constraint has a wider use range than the traditional structural constraint, the addition of the JTV constraint can recover the underground discontinuous interface, and an inversion result of higher resolution can be obtained using the adaptive IESR algorithm.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2021.3071498</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive algorithms ; Algorithms ; Approximation ; Computer applications ; Correlation ; Cosine dot-gradient (CDG) ; Couplings ; Gravity ; inexact structural resemblance (IESR) algorithm ; Jacobian matrices ; joint inversion ; joint total variation (JTV) ; Linear programming ; Magnetic data ; Mathematical model ; Mathematical models ; multiphysical parameter ; Objective function ; Optimization ; Parameters ; Resolution ; Rocks ; Uncertainty</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-10</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-e2b9ee6bf924c96414ff32e0b12ed7562d9e27942448129e44daf8c1de51d9803</citedby><cites>FETCH-LOGICAL-c341t-e2b9ee6bf924c96414ff32e0b12ed7562d9e27942448129e44daf8c1de51d9803</cites><orcidid>0000-0001-7870-2238</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9409662$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9409662$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Rongzhe</creatorcontrib><creatorcontrib>Li, Tonglin</creatorcontrib><creatorcontrib>Liu, Cai</creatorcontrib><title>Joint Inversion of Multiphysical Parameters Based on a Combination of Cosine Dot-Gradient and Joint Total Variation Constraints</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>The joint inversion of structural constraints is a new and rapidly developing detection technology in comprehensive geophysical interpretation. In this article, a new structural constraint 2-D multiphysical parameter joint inversion algorithm for magnetotelluric (MT), gravity, and magnetic data is developed. The structural constraint term is a combination of cosine dot-gradient (CDG) and joint total variation (JTV) constraints, which not only has characteristics of traditional dot product and cross-gradient structure constraints but also avoids the uncertainty of dot product constraints predicting the gradient direction of the model parameters, overcomes the need for high-order differential approximation of the cross-gradient constraint, ignores the influence of the gradient amplitude of different model parameters on the weight of the structural constraint of different regions, and enhances the reconstruction accuracy of the underground discontinuous interface. To more easily combine multiple optimization algorithms to improve the resolution and computational efficiency of joint inversion, an adaptive inexact structural resemblance (IESR) algorithm is developed to minimize numerical solutions to the objective function. Experimental results have demonstrated that the CDG constraint has a wider use range than the traditional structural constraint, the addition of the JTV constraint can recover the underground discontinuous interface, and an inversion result of higher resolution can be obtained using the adaptive IESR algorithm.</description><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Computer applications</subject><subject>Correlation</subject><subject>Cosine dot-gradient (CDG)</subject><subject>Couplings</subject><subject>Gravity</subject><subject>inexact structural resemblance (IESR) algorithm</subject><subject>Jacobian matrices</subject><subject>joint inversion</subject><subject>joint total variation (JTV)</subject><subject>Linear programming</subject><subject>Magnetic data</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>multiphysical parameter</subject><subject>Objective function</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Resolution</subject><subject>Rocks</subject><subject>Uncertainty</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFLwzAUhYMoOKc_QHwJ-NyZm6Zp86hV52Si6PS1pO0tRrZmJpmwJ_-6GR0-3YdzznfhI-Qc2ASAqavF9PVtwhmHScpyEKo4ICPIsiJhUohDMmKgZMILxY_JifdfjIHIIB-R30dr-kBn_Q86b2xPbUefNstg1p9bbxq9pC_a6RWGGNMb7bGlsaRpaVe16XXYT0rrTY_01oZk6nRrMDJ139KBvrAhgj60M8OgtL0PTsfIn5KjTi89nu3vmLzf3y3Kh2T-PJ2V1_OkSQWEBHmtEGXdKS4aJQWIrks5sho4tnkmeauQ50pwIQrgCoVodVc00GIGrSpYOiaXA3ft7PcGfai-7Mb18WXFJXAhc55BbMHQapz13mFXrZ1ZabetgFU7z9XOc7XzXO09x83FsDGI-N9XgikpefoHjap6mA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Zhang, Rongzhe</creator><creator>Li, Tonglin</creator><creator>Liu, Cai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7870-2238</orcidid></search><sort><creationdate>2022</creationdate><title>Joint Inversion of Multiphysical Parameters Based on a Combination of Cosine Dot-Gradient and Joint Total Variation Constraints</title><author>Zhang, Rongzhe ; Li, Tonglin ; Liu, Cai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-e2b9ee6bf924c96414ff32e0b12ed7562d9e27942448129e44daf8c1de51d9803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Computer applications</topic><topic>Correlation</topic><topic>Cosine dot-gradient (CDG)</topic><topic>Couplings</topic><topic>Gravity</topic><topic>inexact structural resemblance (IESR) algorithm</topic><topic>Jacobian matrices</topic><topic>joint inversion</topic><topic>joint total variation (JTV)</topic><topic>Linear programming</topic><topic>Magnetic data</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>multiphysical parameter</topic><topic>Objective function</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Resolution</topic><topic>Rocks</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Rongzhe</creatorcontrib><creatorcontrib>Li, Tonglin</creatorcontrib><creatorcontrib>Liu, Cai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Rongzhe</au><au>Li, Tonglin</au><au>Liu, Cai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint Inversion of Multiphysical Parameters Based on a Combination of Cosine Dot-Gradient and Joint Total Variation Constraints</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2022</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>The joint inversion of structural constraints is a new and rapidly developing detection technology in comprehensive geophysical interpretation. In this article, a new structural constraint 2-D multiphysical parameter joint inversion algorithm for magnetotelluric (MT), gravity, and magnetic data is developed. The structural constraint term is a combination of cosine dot-gradient (CDG) and joint total variation (JTV) constraints, which not only has characteristics of traditional dot product and cross-gradient structure constraints but also avoids the uncertainty of dot product constraints predicting the gradient direction of the model parameters, overcomes the need for high-order differential approximation of the cross-gradient constraint, ignores the influence of the gradient amplitude of different model parameters on the weight of the structural constraint of different regions, and enhances the reconstruction accuracy of the underground discontinuous interface. To more easily combine multiple optimization algorithms to improve the resolution and computational efficiency of joint inversion, an adaptive inexact structural resemblance (IESR) algorithm is developed to minimize numerical solutions to the objective function. Experimental results have demonstrated that the CDG constraint has a wider use range than the traditional structural constraint, the addition of the JTV constraint can recover the underground discontinuous interface, and an inversion result of higher resolution can be obtained using the adaptive IESR algorithm.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2021.3071498</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7870-2238</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-10 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TGRS_2021_3071498 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive algorithms Algorithms Approximation Computer applications Correlation Cosine dot-gradient (CDG) Couplings Gravity inexact structural resemblance (IESR) algorithm Jacobian matrices joint inversion joint total variation (JTV) Linear programming Magnetic data Mathematical model Mathematical models multiphysical parameter Objective function Optimization Parameters Resolution Rocks Uncertainty |
title | Joint Inversion of Multiphysical Parameters Based on a Combination of Cosine Dot-Gradient and Joint Total Variation Constraints |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A43%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20Inversion%20of%20Multiphysical%20Parameters%20Based%20on%20a%20Combination%20of%20Cosine%20Dot-Gradient%20and%20Joint%20Total%20Variation%20Constraints&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Zhang,%20Rongzhe&rft.date=2022&rft.volume=60&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2021.3071498&rft_dat=%3Cproquest_RIE%3E2612467251%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2612467251&rft_id=info:pmid/&rft_ieee_id=9409662&rfr_iscdi=true |