Motion-Compensated Steering: Enhanced Azimuthal Resolution for Polarimetric Rotating Phased Array Radar
The rotating phased array radar (RPAR) is an architecture that could improve the capabilities of the current weather surveillance radar-1988 Doppler (WSR-88D) operational network and is likely to be more affordable than other candidate PAR architectures. However, continuous antenna rotation coupled...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2021-12, Vol.59 (12), p.10073-10093 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10093 |
---|---|
container_issue | 12 |
container_start_page | 10073 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 59 |
creator | Schvartzman, David Torres, Sebastian M. Yu, Tian-You |
description | The rotating phased array radar (RPAR) is an architecture that could improve the capabilities of the current weather surveillance radar-1988 Doppler (WSR-88D) operational network and is likely to be more affordable than other candidate PAR architectures. However, continuous antenna rotation coupled with the need to perform coherent processing of multiple samples results in a degraded effective beamwidth (referred to as beam smearing) compared to architectures based on stationary antennas. The RPAR's beam agility can be exploited to reduce beam-smearing effects by electronically steering the beam on a pulse-to-pulse basis within the coherent processing interval. That is, the motion of the antenna can be compensated to maintain the beam pointed at the center of resolution volume being sampled. This motion-compensated steering (MCS) could reduce the effects of antenna motion and lead to a reduction in the effective beamwidth. The purpose of this article is to present and demonstrate the MCS technique for a dual-polarization RPAR system. In this article, we provide a formulation for the MCS technique, simulations to quantify its performance in mitigating beam-smearing effects, its impacts on the quality of dual-polarization radar-variable estimates, and a practical implementation on the National Severe Storms Laboratory's Advanced Technology Demonstrator (ATD) system. Experiments were carried out using two alternative concepts of operations (CONOPS) described in this article. Results show that a system designed with sufficient pointing accuracy can be operated as an RPAR using MCS, and the impact on radar-variable estimates is comparable to that obtained when operating the same system as a stationary PAR. |
doi_str_mv | 10.1109/TGRS.2021.3055033 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2021_3055033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9359359</ieee_id><sourcerecordid>2601646960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-85d1989552f76584ad3952e73b70b1d75a917e4a98c98e847a2e91a76b1a1a643</originalsourceid><addsrcrecordid>eNqNkN9r1EAQxxdR8Kz-AeJLwEfJObPJ_vKthFqFiuVan8NcMuml3GXP3Q2l_vVuvKKvwsIsw_czw3yEeIuwRgT38fZyc7OWIHFdgVJQVc_ECpWyJei6fi5WgE6X0jr5UryK8R4Aa4VmJe6--TT6qWz84chTpMR9cZOYwzjdfSouph1NXW6d_xoPc9rRvthw9Pt5YYrBh-La7ymMB05h7IqNT5QyWFzvKC5UCPRYbKin8Fq8GGgf-c1TPRM_Pl_cNl_Kq--XX5vzq7KTrkqlVT0665SSg9HK1tRXTkk21dbAFnujyKHhmpztnGVbG5LskIzeIiHpujoT709zj8H_nDmm9t7PYcorW6kBda2dhpzCU6oLPsbAQ3vMR1B4bBHaxWe7-GwXn-2Tz8x8ODEPvPVD7EbOZv5yAGCkRAMq_6TKafv_6WZcvPmp8fOUMvruhI7M_xBXqT_vN_D6kfo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2601646960</pqid></control><display><type>article</type><title>Motion-Compensated Steering: Enhanced Azimuthal Resolution for Polarimetric Rotating Phased Array Radar</title><source>IEEE Electronic Library (IEL)</source><creator>Schvartzman, David ; Torres, Sebastian M. ; Yu, Tian-You</creator><creatorcontrib>Schvartzman, David ; Torres, Sebastian M. ; Yu, Tian-You</creatorcontrib><description>The rotating phased array radar (RPAR) is an architecture that could improve the capabilities of the current weather surveillance radar-1988 Doppler (WSR-88D) operational network and is likely to be more affordable than other candidate PAR architectures. However, continuous antenna rotation coupled with the need to perform coherent processing of multiple samples results in a degraded effective beamwidth (referred to as beam smearing) compared to architectures based on stationary antennas. The RPAR's beam agility can be exploited to reduce beam-smearing effects by electronically steering the beam on a pulse-to-pulse basis within the coherent processing interval. That is, the motion of the antenna can be compensated to maintain the beam pointed at the center of resolution volume being sampled. This motion-compensated steering (MCS) could reduce the effects of antenna motion and lead to a reduction in the effective beamwidth. The purpose of this article is to present and demonstrate the MCS technique for a dual-polarization RPAR system. In this article, we provide a formulation for the MCS technique, simulations to quantify its performance in mitigating beam-smearing effects, its impacts on the quality of dual-polarization radar-variable estimates, and a practical implementation on the National Severe Storms Laboratory's Advanced Technology Demonstrator (ATD) system. Experiments were carried out using two alternative concepts of operations (CONOPS) described in this article. Results show that a system designed with sufficient pointing accuracy can be operated as an RPAR using MCS, and the impact on radar-variable estimates is comparable to that obtained when operating the same system as a stationary PAR.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2021.3055033</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Angular resolution ; Antennas ; Azimuth ; beamwidth ; concept of operations ; Doppler sonar ; Dual polarization radar ; dual-polarization motion-compensated steering ; Engineering ; Engineering, Electrical & Electronic ; Estimates ; Geochemistry & Geophysics ; Imaging Science & Photographic Technology ; Meteorological radar ; Meteorology ; Movement ; phased array radar ; Phased arrays ; Physical Sciences ; Polarization ; Radar ; Radar antennas ; Radar arrays ; Remote Sensing ; Resolution ; Rotation ; Science & Technology ; Steering ; Storms ; Surveillance radar ; Technology ; Technology demonstrator ; weather radar</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2021-12, Vol.59 (12), p.10073-10093</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>5</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000722170500025</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c293t-85d1989552f76584ad3952e73b70b1d75a917e4a98c98e847a2e91a76b1a1a643</citedby><cites>FETCH-LOGICAL-c293t-85d1989552f76584ad3952e73b70b1d75a917e4a98c98e847a2e91a76b1a1a643</cites><orcidid>0000-0002-7490-4809 ; 0000-0002-8377-8947 ; 0000-0003-2819-2748</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9359359$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9359359$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Schvartzman, David</creatorcontrib><creatorcontrib>Torres, Sebastian M.</creatorcontrib><creatorcontrib>Yu, Tian-You</creatorcontrib><title>Motion-Compensated Steering: Enhanced Azimuthal Resolution for Polarimetric Rotating Phased Array Radar</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><addtitle>IEEE T GEOSCI REMOTE</addtitle><description>The rotating phased array radar (RPAR) is an architecture that could improve the capabilities of the current weather surveillance radar-1988 Doppler (WSR-88D) operational network and is likely to be more affordable than other candidate PAR architectures. However, continuous antenna rotation coupled with the need to perform coherent processing of multiple samples results in a degraded effective beamwidth (referred to as beam smearing) compared to architectures based on stationary antennas. The RPAR's beam agility can be exploited to reduce beam-smearing effects by electronically steering the beam on a pulse-to-pulse basis within the coherent processing interval. That is, the motion of the antenna can be compensated to maintain the beam pointed at the center of resolution volume being sampled. This motion-compensated steering (MCS) could reduce the effects of antenna motion and lead to a reduction in the effective beamwidth. The purpose of this article is to present and demonstrate the MCS technique for a dual-polarization RPAR system. In this article, we provide a formulation for the MCS technique, simulations to quantify its performance in mitigating beam-smearing effects, its impacts on the quality of dual-polarization radar-variable estimates, and a practical implementation on the National Severe Storms Laboratory's Advanced Technology Demonstrator (ATD) system. Experiments were carried out using two alternative concepts of operations (CONOPS) described in this article. Results show that a system designed with sufficient pointing accuracy can be operated as an RPAR using MCS, and the impact on radar-variable estimates is comparable to that obtained when operating the same system as a stationary PAR.</description><subject>Angular resolution</subject><subject>Antennas</subject><subject>Azimuth</subject><subject>beamwidth</subject><subject>concept of operations</subject><subject>Doppler sonar</subject><subject>Dual polarization radar</subject><subject>dual-polarization motion-compensated steering</subject><subject>Engineering</subject><subject>Engineering, Electrical & Electronic</subject><subject>Estimates</subject><subject>Geochemistry & Geophysics</subject><subject>Imaging Science & Photographic Technology</subject><subject>Meteorological radar</subject><subject>Meteorology</subject><subject>Movement</subject><subject>phased array radar</subject><subject>Phased arrays</subject><subject>Physical Sciences</subject><subject>Polarization</subject><subject>Radar</subject><subject>Radar antennas</subject><subject>Radar arrays</subject><subject>Remote Sensing</subject><subject>Resolution</subject><subject>Rotation</subject><subject>Science & Technology</subject><subject>Steering</subject><subject>Storms</subject><subject>Surveillance radar</subject><subject>Technology</subject><subject>Technology demonstrator</subject><subject>weather radar</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>HGBXW</sourceid><recordid>eNqNkN9r1EAQxxdR8Kz-AeJLwEfJObPJ_vKthFqFiuVan8NcMuml3GXP3Q2l_vVuvKKvwsIsw_czw3yEeIuwRgT38fZyc7OWIHFdgVJQVc_ECpWyJei6fi5WgE6X0jr5UryK8R4Aa4VmJe6--TT6qWz84chTpMR9cZOYwzjdfSouph1NXW6d_xoPc9rRvthw9Pt5YYrBh-La7ymMB05h7IqNT5QyWFzvKC5UCPRYbKin8Fq8GGgf-c1TPRM_Pl_cNl_Kq--XX5vzq7KTrkqlVT0665SSg9HK1tRXTkk21dbAFnujyKHhmpztnGVbG5LskIzeIiHpujoT709zj8H_nDmm9t7PYcorW6kBda2dhpzCU6oLPsbAQ3vMR1B4bBHaxWe7-GwXn-2Tz8x8ODEPvPVD7EbOZv5yAGCkRAMq_6TKafv_6WZcvPmp8fOUMvruhI7M_xBXqT_vN_D6kfo</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Schvartzman, David</creator><creator>Torres, Sebastian M.</creator><creator>Yu, Tian-You</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7490-4809</orcidid><orcidid>https://orcid.org/0000-0002-8377-8947</orcidid><orcidid>https://orcid.org/0000-0003-2819-2748</orcidid></search><sort><creationdate>20211201</creationdate><title>Motion-Compensated Steering: Enhanced Azimuthal Resolution for Polarimetric Rotating Phased Array Radar</title><author>Schvartzman, David ; Torres, Sebastian M. ; Yu, Tian-You</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-85d1989552f76584ad3952e73b70b1d75a917e4a98c98e847a2e91a76b1a1a643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Angular resolution</topic><topic>Antennas</topic><topic>Azimuth</topic><topic>beamwidth</topic><topic>concept of operations</topic><topic>Doppler sonar</topic><topic>Dual polarization radar</topic><topic>dual-polarization motion-compensated steering</topic><topic>Engineering</topic><topic>Engineering, Electrical & Electronic</topic><topic>Estimates</topic><topic>Geochemistry & Geophysics</topic><topic>Imaging Science & Photographic Technology</topic><topic>Meteorological radar</topic><topic>Meteorology</topic><topic>Movement</topic><topic>phased array radar</topic><topic>Phased arrays</topic><topic>Physical Sciences</topic><topic>Polarization</topic><topic>Radar</topic><topic>Radar antennas</topic><topic>Radar arrays</topic><topic>Remote Sensing</topic><topic>Resolution</topic><topic>Rotation</topic><topic>Science & Technology</topic><topic>Steering</topic><topic>Storms</topic><topic>Surveillance radar</topic><topic>Technology</topic><topic>Technology demonstrator</topic><topic>weather radar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schvartzman, David</creatorcontrib><creatorcontrib>Torres, Sebastian M.</creatorcontrib><creatorcontrib>Yu, Tian-You</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Schvartzman, David</au><au>Torres, Sebastian M.</au><au>Yu, Tian-You</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Motion-Compensated Steering: Enhanced Azimuthal Resolution for Polarimetric Rotating Phased Array Radar</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><stitle>IEEE T GEOSCI REMOTE</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>59</volume><issue>12</issue><spage>10073</spage><epage>10093</epage><pages>10073-10093</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>The rotating phased array radar (RPAR) is an architecture that could improve the capabilities of the current weather surveillance radar-1988 Doppler (WSR-88D) operational network and is likely to be more affordable than other candidate PAR architectures. However, continuous antenna rotation coupled with the need to perform coherent processing of multiple samples results in a degraded effective beamwidth (referred to as beam smearing) compared to architectures based on stationary antennas. The RPAR's beam agility can be exploited to reduce beam-smearing effects by electronically steering the beam on a pulse-to-pulse basis within the coherent processing interval. That is, the motion of the antenna can be compensated to maintain the beam pointed at the center of resolution volume being sampled. This motion-compensated steering (MCS) could reduce the effects of antenna motion and lead to a reduction in the effective beamwidth. The purpose of this article is to present and demonstrate the MCS technique for a dual-polarization RPAR system. In this article, we provide a formulation for the MCS technique, simulations to quantify its performance in mitigating beam-smearing effects, its impacts on the quality of dual-polarization radar-variable estimates, and a practical implementation on the National Severe Storms Laboratory's Advanced Technology Demonstrator (ATD) system. Experiments were carried out using two alternative concepts of operations (CONOPS) described in this article. Results show that a system designed with sufficient pointing accuracy can be operated as an RPAR using MCS, and the impact on radar-variable estimates is comparable to that obtained when operating the same system as a stationary PAR.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/TGRS.2021.3055033</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-7490-4809</orcidid><orcidid>https://orcid.org/0000-0002-8377-8947</orcidid><orcidid>https://orcid.org/0000-0003-2819-2748</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2021-12, Vol.59 (12), p.10073-10093 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TGRS_2021_3055033 |
source | IEEE Electronic Library (IEL) |
subjects | Angular resolution Antennas Azimuth beamwidth concept of operations Doppler sonar Dual polarization radar dual-polarization motion-compensated steering Engineering Engineering, Electrical & Electronic Estimates Geochemistry & Geophysics Imaging Science & Photographic Technology Meteorological radar Meteorology Movement phased array radar Phased arrays Physical Sciences Polarization Radar Radar antennas Radar arrays Remote Sensing Resolution Rotation Science & Technology Steering Storms Surveillance radar Technology Technology demonstrator weather radar |
title | Motion-Compensated Steering: Enhanced Azimuthal Resolution for Polarimetric Rotating Phased Array Radar |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A12%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Motion-Compensated%20Steering:%20Enhanced%20Azimuthal%20Resolution%20for%20Polarimetric%20Rotating%20Phased%20Array%20Radar&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Schvartzman,%20David&rft.date=2021-12-01&rft.volume=59&rft.issue=12&rft.spage=10073&rft.epage=10093&rft.pages=10073-10093&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2021.3055033&rft_dat=%3Cproquest_RIE%3E2601646960%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2601646960&rft_id=info:pmid/&rft_ieee_id=9359359&rfr_iscdi=true |