Motion-Compensated Steering: Enhanced Azimuthal Resolution for Polarimetric Rotating Phased Array Radar

The rotating phased array radar (RPAR) is an architecture that could improve the capabilities of the current weather surveillance radar-1988 Doppler (WSR-88D) operational network and is likely to be more affordable than other candidate PAR architectures. However, continuous antenna rotation coupled...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2021-12, Vol.59 (12), p.10073-10093
Hauptverfasser: Schvartzman, David, Torres, Sebastian M., Yu, Tian-You
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10093
container_issue 12
container_start_page 10073
container_title IEEE transactions on geoscience and remote sensing
container_volume 59
creator Schvartzman, David
Torres, Sebastian M.
Yu, Tian-You
description The rotating phased array radar (RPAR) is an architecture that could improve the capabilities of the current weather surveillance radar-1988 Doppler (WSR-88D) operational network and is likely to be more affordable than other candidate PAR architectures. However, continuous antenna rotation coupled with the need to perform coherent processing of multiple samples results in a degraded effective beamwidth (referred to as beam smearing) compared to architectures based on stationary antennas. The RPAR's beam agility can be exploited to reduce beam-smearing effects by electronically steering the beam on a pulse-to-pulse basis within the coherent processing interval. That is, the motion of the antenna can be compensated to maintain the beam pointed at the center of resolution volume being sampled. This motion-compensated steering (MCS) could reduce the effects of antenna motion and lead to a reduction in the effective beamwidth. The purpose of this article is to present and demonstrate the MCS technique for a dual-polarization RPAR system. In this article, we provide a formulation for the MCS technique, simulations to quantify its performance in mitigating beam-smearing effects, its impacts on the quality of dual-polarization radar-variable estimates, and a practical implementation on the National Severe Storms Laboratory's Advanced Technology Demonstrator (ATD) system. Experiments were carried out using two alternative concepts of operations (CONOPS) described in this article. Results show that a system designed with sufficient pointing accuracy can be operated as an RPAR using MCS, and the impact on radar-variable estimates is comparable to that obtained when operating the same system as a stationary PAR.
doi_str_mv 10.1109/TGRS.2021.3055033
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2021_3055033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9359359</ieee_id><sourcerecordid>2601646960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-85d1989552f76584ad3952e73b70b1d75a917e4a98c98e847a2e91a76b1a1a643</originalsourceid><addsrcrecordid>eNqNkN9r1EAQxxdR8Kz-AeJLwEfJObPJ_vKthFqFiuVan8NcMuml3GXP3Q2l_vVuvKKvwsIsw_czw3yEeIuwRgT38fZyc7OWIHFdgVJQVc_ECpWyJei6fi5WgE6X0jr5UryK8R4Aa4VmJe6--TT6qWz84chTpMR9cZOYwzjdfSouph1NXW6d_xoPc9rRvthw9Pt5YYrBh-La7ymMB05h7IqNT5QyWFzvKC5UCPRYbKin8Fq8GGgf-c1TPRM_Pl_cNl_Kq--XX5vzq7KTrkqlVT0665SSg9HK1tRXTkk21dbAFnujyKHhmpztnGVbG5LskIzeIiHpujoT709zj8H_nDmm9t7PYcorW6kBda2dhpzCU6oLPsbAQ3vMR1B4bBHaxWe7-GwXn-2Tz8x8ODEPvPVD7EbOZv5yAGCkRAMq_6TKafv_6WZcvPmp8fOUMvruhI7M_xBXqT_vN_D6kfo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2601646960</pqid></control><display><type>article</type><title>Motion-Compensated Steering: Enhanced Azimuthal Resolution for Polarimetric Rotating Phased Array Radar</title><source>IEEE Electronic Library (IEL)</source><creator>Schvartzman, David ; Torres, Sebastian M. ; Yu, Tian-You</creator><creatorcontrib>Schvartzman, David ; Torres, Sebastian M. ; Yu, Tian-You</creatorcontrib><description>The rotating phased array radar (RPAR) is an architecture that could improve the capabilities of the current weather surveillance radar-1988 Doppler (WSR-88D) operational network and is likely to be more affordable than other candidate PAR architectures. However, continuous antenna rotation coupled with the need to perform coherent processing of multiple samples results in a degraded effective beamwidth (referred to as beam smearing) compared to architectures based on stationary antennas. The RPAR's beam agility can be exploited to reduce beam-smearing effects by electronically steering the beam on a pulse-to-pulse basis within the coherent processing interval. That is, the motion of the antenna can be compensated to maintain the beam pointed at the center of resolution volume being sampled. This motion-compensated steering (MCS) could reduce the effects of antenna motion and lead to a reduction in the effective beamwidth. The purpose of this article is to present and demonstrate the MCS technique for a dual-polarization RPAR system. In this article, we provide a formulation for the MCS technique, simulations to quantify its performance in mitigating beam-smearing effects, its impacts on the quality of dual-polarization radar-variable estimates, and a practical implementation on the National Severe Storms Laboratory's Advanced Technology Demonstrator (ATD) system. Experiments were carried out using two alternative concepts of operations (CONOPS) described in this article. Results show that a system designed with sufficient pointing accuracy can be operated as an RPAR using MCS, and the impact on radar-variable estimates is comparable to that obtained when operating the same system as a stationary PAR.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2021.3055033</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Angular resolution ; Antennas ; Azimuth ; beamwidth ; concept of operations ; Doppler sonar ; Dual polarization radar ; dual-polarization motion-compensated steering ; Engineering ; Engineering, Electrical &amp; Electronic ; Estimates ; Geochemistry &amp; Geophysics ; Imaging Science &amp; Photographic Technology ; Meteorological radar ; Meteorology ; Movement ; phased array radar ; Phased arrays ; Physical Sciences ; Polarization ; Radar ; Radar antennas ; Radar arrays ; Remote Sensing ; Resolution ; Rotation ; Science &amp; Technology ; Steering ; Storms ; Surveillance radar ; Technology ; Technology demonstrator ; weather radar</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2021-12, Vol.59 (12), p.10073-10093</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>5</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000722170500025</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c293t-85d1989552f76584ad3952e73b70b1d75a917e4a98c98e847a2e91a76b1a1a643</citedby><cites>FETCH-LOGICAL-c293t-85d1989552f76584ad3952e73b70b1d75a917e4a98c98e847a2e91a76b1a1a643</cites><orcidid>0000-0002-7490-4809 ; 0000-0002-8377-8947 ; 0000-0003-2819-2748</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9359359$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9359359$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Schvartzman, David</creatorcontrib><creatorcontrib>Torres, Sebastian M.</creatorcontrib><creatorcontrib>Yu, Tian-You</creatorcontrib><title>Motion-Compensated Steering: Enhanced Azimuthal Resolution for Polarimetric Rotating Phased Array Radar</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><addtitle>IEEE T GEOSCI REMOTE</addtitle><description>The rotating phased array radar (RPAR) is an architecture that could improve the capabilities of the current weather surveillance radar-1988 Doppler (WSR-88D) operational network and is likely to be more affordable than other candidate PAR architectures. However, continuous antenna rotation coupled with the need to perform coherent processing of multiple samples results in a degraded effective beamwidth (referred to as beam smearing) compared to architectures based on stationary antennas. The RPAR's beam agility can be exploited to reduce beam-smearing effects by electronically steering the beam on a pulse-to-pulse basis within the coherent processing interval. That is, the motion of the antenna can be compensated to maintain the beam pointed at the center of resolution volume being sampled. This motion-compensated steering (MCS) could reduce the effects of antenna motion and lead to a reduction in the effective beamwidth. The purpose of this article is to present and demonstrate the MCS technique for a dual-polarization RPAR system. In this article, we provide a formulation for the MCS technique, simulations to quantify its performance in mitigating beam-smearing effects, its impacts on the quality of dual-polarization radar-variable estimates, and a practical implementation on the National Severe Storms Laboratory's Advanced Technology Demonstrator (ATD) system. Experiments were carried out using two alternative concepts of operations (CONOPS) described in this article. Results show that a system designed with sufficient pointing accuracy can be operated as an RPAR using MCS, and the impact on radar-variable estimates is comparable to that obtained when operating the same system as a stationary PAR.</description><subject>Angular resolution</subject><subject>Antennas</subject><subject>Azimuth</subject><subject>beamwidth</subject><subject>concept of operations</subject><subject>Doppler sonar</subject><subject>Dual polarization radar</subject><subject>dual-polarization motion-compensated steering</subject><subject>Engineering</subject><subject>Engineering, Electrical &amp; Electronic</subject><subject>Estimates</subject><subject>Geochemistry &amp; Geophysics</subject><subject>Imaging Science &amp; Photographic Technology</subject><subject>Meteorological radar</subject><subject>Meteorology</subject><subject>Movement</subject><subject>phased array radar</subject><subject>Phased arrays</subject><subject>Physical Sciences</subject><subject>Polarization</subject><subject>Radar</subject><subject>Radar antennas</subject><subject>Radar arrays</subject><subject>Remote Sensing</subject><subject>Resolution</subject><subject>Rotation</subject><subject>Science &amp; Technology</subject><subject>Steering</subject><subject>Storms</subject><subject>Surveillance radar</subject><subject>Technology</subject><subject>Technology demonstrator</subject><subject>weather radar</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>HGBXW</sourceid><recordid>eNqNkN9r1EAQxxdR8Kz-AeJLwEfJObPJ_vKthFqFiuVan8NcMuml3GXP3Q2l_vVuvKKvwsIsw_czw3yEeIuwRgT38fZyc7OWIHFdgVJQVc_ECpWyJei6fi5WgE6X0jr5UryK8R4Aa4VmJe6--TT6qWz84chTpMR9cZOYwzjdfSouph1NXW6d_xoPc9rRvthw9Pt5YYrBh-La7ymMB05h7IqNT5QyWFzvKC5UCPRYbKin8Fq8GGgf-c1TPRM_Pl_cNl_Kq--XX5vzq7KTrkqlVT0665SSg9HK1tRXTkk21dbAFnujyKHhmpztnGVbG5LskIzeIiHpujoT709zj8H_nDmm9t7PYcorW6kBda2dhpzCU6oLPsbAQ3vMR1B4bBHaxWe7-GwXn-2Tz8x8ODEPvPVD7EbOZv5yAGCkRAMq_6TKafv_6WZcvPmp8fOUMvruhI7M_xBXqT_vN_D6kfo</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Schvartzman, David</creator><creator>Torres, Sebastian M.</creator><creator>Yu, Tian-You</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7490-4809</orcidid><orcidid>https://orcid.org/0000-0002-8377-8947</orcidid><orcidid>https://orcid.org/0000-0003-2819-2748</orcidid></search><sort><creationdate>20211201</creationdate><title>Motion-Compensated Steering: Enhanced Azimuthal Resolution for Polarimetric Rotating Phased Array Radar</title><author>Schvartzman, David ; Torres, Sebastian M. ; Yu, Tian-You</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-85d1989552f76584ad3952e73b70b1d75a917e4a98c98e847a2e91a76b1a1a643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Angular resolution</topic><topic>Antennas</topic><topic>Azimuth</topic><topic>beamwidth</topic><topic>concept of operations</topic><topic>Doppler sonar</topic><topic>Dual polarization radar</topic><topic>dual-polarization motion-compensated steering</topic><topic>Engineering</topic><topic>Engineering, Electrical &amp; Electronic</topic><topic>Estimates</topic><topic>Geochemistry &amp; Geophysics</topic><topic>Imaging Science &amp; Photographic Technology</topic><topic>Meteorological radar</topic><topic>Meteorology</topic><topic>Movement</topic><topic>phased array radar</topic><topic>Phased arrays</topic><topic>Physical Sciences</topic><topic>Polarization</topic><topic>Radar</topic><topic>Radar antennas</topic><topic>Radar arrays</topic><topic>Remote Sensing</topic><topic>Resolution</topic><topic>Rotation</topic><topic>Science &amp; Technology</topic><topic>Steering</topic><topic>Storms</topic><topic>Surveillance radar</topic><topic>Technology</topic><topic>Technology demonstrator</topic><topic>weather radar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schvartzman, David</creatorcontrib><creatorcontrib>Torres, Sebastian M.</creatorcontrib><creatorcontrib>Yu, Tian-You</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Schvartzman, David</au><au>Torres, Sebastian M.</au><au>Yu, Tian-You</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Motion-Compensated Steering: Enhanced Azimuthal Resolution for Polarimetric Rotating Phased Array Radar</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><stitle>IEEE T GEOSCI REMOTE</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>59</volume><issue>12</issue><spage>10073</spage><epage>10093</epage><pages>10073-10093</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>The rotating phased array radar (RPAR) is an architecture that could improve the capabilities of the current weather surveillance radar-1988 Doppler (WSR-88D) operational network and is likely to be more affordable than other candidate PAR architectures. However, continuous antenna rotation coupled with the need to perform coherent processing of multiple samples results in a degraded effective beamwidth (referred to as beam smearing) compared to architectures based on stationary antennas. The RPAR's beam agility can be exploited to reduce beam-smearing effects by electronically steering the beam on a pulse-to-pulse basis within the coherent processing interval. That is, the motion of the antenna can be compensated to maintain the beam pointed at the center of resolution volume being sampled. This motion-compensated steering (MCS) could reduce the effects of antenna motion and lead to a reduction in the effective beamwidth. The purpose of this article is to present and demonstrate the MCS technique for a dual-polarization RPAR system. In this article, we provide a formulation for the MCS technique, simulations to quantify its performance in mitigating beam-smearing effects, its impacts on the quality of dual-polarization radar-variable estimates, and a practical implementation on the National Severe Storms Laboratory's Advanced Technology Demonstrator (ATD) system. Experiments were carried out using two alternative concepts of operations (CONOPS) described in this article. Results show that a system designed with sufficient pointing accuracy can be operated as an RPAR using MCS, and the impact on radar-variable estimates is comparable to that obtained when operating the same system as a stationary PAR.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/TGRS.2021.3055033</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-7490-4809</orcidid><orcidid>https://orcid.org/0000-0002-8377-8947</orcidid><orcidid>https://orcid.org/0000-0003-2819-2748</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2021-12, Vol.59 (12), p.10073-10093
issn 0196-2892
1558-0644
language eng
recordid cdi_crossref_primary_10_1109_TGRS_2021_3055033
source IEEE Electronic Library (IEL)
subjects Angular resolution
Antennas
Azimuth
beamwidth
concept of operations
Doppler sonar
Dual polarization radar
dual-polarization motion-compensated steering
Engineering
Engineering, Electrical & Electronic
Estimates
Geochemistry & Geophysics
Imaging Science & Photographic Technology
Meteorological radar
Meteorology
Movement
phased array radar
Phased arrays
Physical Sciences
Polarization
Radar
Radar antennas
Radar arrays
Remote Sensing
Resolution
Rotation
Science & Technology
Steering
Storms
Surveillance radar
Technology
Technology demonstrator
weather radar
title Motion-Compensated Steering: Enhanced Azimuthal Resolution for Polarimetric Rotating Phased Array Radar
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A12%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Motion-Compensated%20Steering:%20Enhanced%20Azimuthal%20Resolution%20for%20Polarimetric%20Rotating%20Phased%20Array%20Radar&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Schvartzman,%20David&rft.date=2021-12-01&rft.volume=59&rft.issue=12&rft.spage=10073&rft.epage=10093&rft.pages=10073-10093&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2021.3055033&rft_dat=%3Cproquest_RIE%3E2601646960%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2601646960&rft_id=info:pmid/&rft_ieee_id=9359359&rfr_iscdi=true