Removing Atmospheric Turbulence Effects Via Geometric Distortion and Blur Representation

Removing the geometric distortion and space-time-varying blur caused by atmospheric turbulence from a given image sequence remains a challenge. Since geometric distortion and blur are two different kinds of distortions and interact with each other in the process of image restoration, it is difficult...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2022-01, Vol.60, p.1-13
Hauptverfasser: Hua, Xia, Pan, Chao, Shi, Yu, Liu, Jianguo, Hong, Hanyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 60
creator Hua, Xia
Pan, Chao
Shi, Yu
Liu, Jianguo
Hong, Hanyu
description Removing the geometric distortion and space-time-varying blur caused by atmospheric turbulence from a given image sequence remains a challenge. Since geometric distortion and blur are two different kinds of distortions and interact with each other in the process of image restoration, it is difficult to extract the features that are useful to the restoration process when the images experience multiple distortions. In this article, we propose a new scheme based on geometric distortion and blur representation. The blur invariants and maximum gradient are used to represent the geometric distortion and sharpness of an image frame, respectively. The proposed scheme consists of three parts. First, two fast frame selection algorithms based on independent evaluations of the sharpness and geometric distortion are proposed to subsample a sharp subsequence and obtain a reference image. Next, to suppress the geometric distortion, a moment-blur-invariant-based method is presented to estimate the deformation vector between two degraded frames, and the selected sharp frames are registered to the reference image. Finally, a blind deconvolution method is applied to deblur the fused image, generating a final restoration result. Various experimental results show that the proposed method can effectively alleviate distortion and blur, as well as significantly improve the visual quality of real atmospheric turbulence-degraded images.
doi_str_mv 10.1109/TGRS.2020.3043627
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2020_3043627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9298458</ieee_id><sourcerecordid>2605708287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-2c9f7c21dc0c90a3c1cc1e235c1bf8096b2acd3377defd193925334fa4ef0e923</originalsourceid><addsrcrecordid>eNo9kE1LAzEURYMoWKs_QNwEXE99SeYry1prFQpCreIupJkXndKZjElG8N_bocXVg8u598Eh5JrBhDGQd-vF6nXCgcNEQCpyXpyQEcuyMoE8TU_JCJjME15Kfk4uQtgCsDRjxYh8rLBxP3X7SaexcaH7Ql8buu79pt9ha5DOrUUTA32vNV2gazAOwEMdovOxdi3VbUXvd72nK-w8BmyjHvJLcmb1LuDV8Y7J2-N8PXtKli-L59l0mRguRUy4kbYwnFUGjAQtDDOGIReZYRtbgsw3XJtKiKKo0FZMCskzIVKrU7SAkosxuT3sdt599xii2rret_uXiueQFVDysthT7EAZ70LwaFXn60b7X8VADQLVIFANAtVR4L5zc-jUiPjPSy7LNCvFH_5ybYI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2605708287</pqid></control><display><type>article</type><title>Removing Atmospheric Turbulence Effects Via Geometric Distortion and Blur Representation</title><source>IEEE Electronic Library (IEL)</source><creator>Hua, Xia ; Pan, Chao ; Shi, Yu ; Liu, Jianguo ; Hong, Hanyu</creator><creatorcontrib>Hua, Xia ; Pan, Chao ; Shi, Yu ; Liu, Jianguo ; Hong, Hanyu</creatorcontrib><description>Removing the geometric distortion and space-time-varying blur caused by atmospheric turbulence from a given image sequence remains a challenge. Since geometric distortion and blur are two different kinds of distortions and interact with each other in the process of image restoration, it is difficult to extract the features that are useful to the restoration process when the images experience multiple distortions. In this article, we propose a new scheme based on geometric distortion and blur representation. The blur invariants and maximum gradient are used to represent the geometric distortion and sharpness of an image frame, respectively. The proposed scheme consists of three parts. First, two fast frame selection algorithms based on independent evaluations of the sharpness and geometric distortion are proposed to subsample a sharp subsequence and obtain a reference image. Next, to suppress the geometric distortion, a moment-blur-invariant-based method is presented to estimate the deformation vector between two degraded frames, and the selected sharp frames are registered to the reference image. Finally, a blind deconvolution method is applied to deblur the fused image, generating a final restoration result. Various experimental results show that the proposed method can effectively alleviate distortion and blur, as well as significantly improve the visual quality of real atmospheric turbulence-degraded images.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2020.3043627</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Atmospheric turbulence ; blur invariants ; Deformation ; Distortion ; Feature extraction ; frame selection ; Image edge detection ; Image quality ; Image reconstruction ; Image restoration ; Invariants ; nonrigid image registration ; Optical distortion ; Representations ; Restoration ; Sharpness ; Strain ; Turbulence effects</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022-01, Vol.60, p.1-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-2c9f7c21dc0c90a3c1cc1e235c1bf8096b2acd3377defd193925334fa4ef0e923</citedby><cites>FETCH-LOGICAL-c293t-2c9f7c21dc0c90a3c1cc1e235c1bf8096b2acd3377defd193925334fa4ef0e923</cites><orcidid>0000-0002-3620-3905 ; 0000-0002-7732-9766 ; 0000-0002-7279-1919</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9298458$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9298458$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hua, Xia</creatorcontrib><creatorcontrib>Pan, Chao</creatorcontrib><creatorcontrib>Shi, Yu</creatorcontrib><creatorcontrib>Liu, Jianguo</creatorcontrib><creatorcontrib>Hong, Hanyu</creatorcontrib><title>Removing Atmospheric Turbulence Effects Via Geometric Distortion and Blur Representation</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Removing the geometric distortion and space-time-varying blur caused by atmospheric turbulence from a given image sequence remains a challenge. Since geometric distortion and blur are two different kinds of distortions and interact with each other in the process of image restoration, it is difficult to extract the features that are useful to the restoration process when the images experience multiple distortions. In this article, we propose a new scheme based on geometric distortion and blur representation. The blur invariants and maximum gradient are used to represent the geometric distortion and sharpness of an image frame, respectively. The proposed scheme consists of three parts. First, two fast frame selection algorithms based on independent evaluations of the sharpness and geometric distortion are proposed to subsample a sharp subsequence and obtain a reference image. Next, to suppress the geometric distortion, a moment-blur-invariant-based method is presented to estimate the deformation vector between two degraded frames, and the selected sharp frames are registered to the reference image. Finally, a blind deconvolution method is applied to deblur the fused image, generating a final restoration result. Various experimental results show that the proposed method can effectively alleviate distortion and blur, as well as significantly improve the visual quality of real atmospheric turbulence-degraded images.</description><subject>Algorithms</subject><subject>Atmospheric turbulence</subject><subject>blur invariants</subject><subject>Deformation</subject><subject>Distortion</subject><subject>Feature extraction</subject><subject>frame selection</subject><subject>Image edge detection</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>Image restoration</subject><subject>Invariants</subject><subject>nonrigid image registration</subject><subject>Optical distortion</subject><subject>Representations</subject><subject>Restoration</subject><subject>Sharpness</subject><subject>Strain</subject><subject>Turbulence effects</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEURYMoWKs_QNwEXE99SeYry1prFQpCreIupJkXndKZjElG8N_bocXVg8u598Eh5JrBhDGQd-vF6nXCgcNEQCpyXpyQEcuyMoE8TU_JCJjME15Kfk4uQtgCsDRjxYh8rLBxP3X7SaexcaH7Ql8buu79pt9ha5DOrUUTA32vNV2gazAOwEMdovOxdi3VbUXvd72nK-w8BmyjHvJLcmb1LuDV8Y7J2-N8PXtKli-L59l0mRguRUy4kbYwnFUGjAQtDDOGIReZYRtbgsw3XJtKiKKo0FZMCskzIVKrU7SAkosxuT3sdt599xii2rret_uXiueQFVDysthT7EAZ70LwaFXn60b7X8VADQLVIFANAtVR4L5zc-jUiPjPSy7LNCvFH_5ybYI</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Hua, Xia</creator><creator>Pan, Chao</creator><creator>Shi, Yu</creator><creator>Liu, Jianguo</creator><creator>Hong, Hanyu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3620-3905</orcidid><orcidid>https://orcid.org/0000-0002-7732-9766</orcidid><orcidid>https://orcid.org/0000-0002-7279-1919</orcidid></search><sort><creationdate>20220101</creationdate><title>Removing Atmospheric Turbulence Effects Via Geometric Distortion and Blur Representation</title><author>Hua, Xia ; Pan, Chao ; Shi, Yu ; Liu, Jianguo ; Hong, Hanyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-2c9f7c21dc0c90a3c1cc1e235c1bf8096b2acd3377defd193925334fa4ef0e923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Atmospheric turbulence</topic><topic>blur invariants</topic><topic>Deformation</topic><topic>Distortion</topic><topic>Feature extraction</topic><topic>frame selection</topic><topic>Image edge detection</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>Image restoration</topic><topic>Invariants</topic><topic>nonrigid image registration</topic><topic>Optical distortion</topic><topic>Representations</topic><topic>Restoration</topic><topic>Sharpness</topic><topic>Strain</topic><topic>Turbulence effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hua, Xia</creatorcontrib><creatorcontrib>Pan, Chao</creatorcontrib><creatorcontrib>Shi, Yu</creatorcontrib><creatorcontrib>Liu, Jianguo</creatorcontrib><creatorcontrib>Hong, Hanyu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hua, Xia</au><au>Pan, Chao</au><au>Shi, Yu</au><au>Liu, Jianguo</au><au>Hong, Hanyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Removing Atmospheric Turbulence Effects Via Geometric Distortion and Blur Representation</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2022-01-01</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Removing the geometric distortion and space-time-varying blur caused by atmospheric turbulence from a given image sequence remains a challenge. Since geometric distortion and blur are two different kinds of distortions and interact with each other in the process of image restoration, it is difficult to extract the features that are useful to the restoration process when the images experience multiple distortions. In this article, we propose a new scheme based on geometric distortion and blur representation. The blur invariants and maximum gradient are used to represent the geometric distortion and sharpness of an image frame, respectively. The proposed scheme consists of three parts. First, two fast frame selection algorithms based on independent evaluations of the sharpness and geometric distortion are proposed to subsample a sharp subsequence and obtain a reference image. Next, to suppress the geometric distortion, a moment-blur-invariant-based method is presented to estimate the deformation vector between two degraded frames, and the selected sharp frames are registered to the reference image. Finally, a blind deconvolution method is applied to deblur the fused image, generating a final restoration result. Various experimental results show that the proposed method can effectively alleviate distortion and blur, as well as significantly improve the visual quality of real atmospheric turbulence-degraded images.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2020.3043627</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3620-3905</orcidid><orcidid>https://orcid.org/0000-0002-7732-9766</orcidid><orcidid>https://orcid.org/0000-0002-7279-1919</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2022-01, Vol.60, p.1-13
issn 0196-2892
1558-0644
language eng
recordid cdi_crossref_primary_10_1109_TGRS_2020_3043627
source IEEE Electronic Library (IEL)
subjects Algorithms
Atmospheric turbulence
blur invariants
Deformation
Distortion
Feature extraction
frame selection
Image edge detection
Image quality
Image reconstruction
Image restoration
Invariants
nonrigid image registration
Optical distortion
Representations
Restoration
Sharpness
Strain
Turbulence effects
title Removing Atmospheric Turbulence Effects Via Geometric Distortion and Blur Representation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A31%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Removing%20Atmospheric%20Turbulence%20Effects%20Via%20Geometric%20Distortion%20and%20Blur%20Representation&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Hua,%20Xia&rft.date=2022-01-01&rft.volume=60&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2020.3043627&rft_dat=%3Cproquest_RIE%3E2605708287%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2605708287&rft_id=info:pmid/&rft_ieee_id=9298458&rfr_iscdi=true