Removing Atmospheric Turbulence Effects Via Geometric Distortion and Blur Representation
Removing the geometric distortion and space-time-varying blur caused by atmospheric turbulence from a given image sequence remains a challenge. Since geometric distortion and blur are two different kinds of distortions and interact with each other in the process of image restoration, it is difficult...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2022-01, Vol.60, p.1-13 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 60 |
creator | Hua, Xia Pan, Chao Shi, Yu Liu, Jianguo Hong, Hanyu |
description | Removing the geometric distortion and space-time-varying blur caused by atmospheric turbulence from a given image sequence remains a challenge. Since geometric distortion and blur are two different kinds of distortions and interact with each other in the process of image restoration, it is difficult to extract the features that are useful to the restoration process when the images experience multiple distortions. In this article, we propose a new scheme based on geometric distortion and blur representation. The blur invariants and maximum gradient are used to represent the geometric distortion and sharpness of an image frame, respectively. The proposed scheme consists of three parts. First, two fast frame selection algorithms based on independent evaluations of the sharpness and geometric distortion are proposed to subsample a sharp subsequence and obtain a reference image. Next, to suppress the geometric distortion, a moment-blur-invariant-based method is presented to estimate the deformation vector between two degraded frames, and the selected sharp frames are registered to the reference image. Finally, a blind deconvolution method is applied to deblur the fused image, generating a final restoration result. Various experimental results show that the proposed method can effectively alleviate distortion and blur, as well as significantly improve the visual quality of real atmospheric turbulence-degraded images. |
doi_str_mv | 10.1109/TGRS.2020.3043627 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2020_3043627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9298458</ieee_id><sourcerecordid>2605708287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-2c9f7c21dc0c90a3c1cc1e235c1bf8096b2acd3377defd193925334fa4ef0e923</originalsourceid><addsrcrecordid>eNo9kE1LAzEURYMoWKs_QNwEXE99SeYry1prFQpCreIupJkXndKZjElG8N_bocXVg8u598Eh5JrBhDGQd-vF6nXCgcNEQCpyXpyQEcuyMoE8TU_JCJjME15Kfk4uQtgCsDRjxYh8rLBxP3X7SaexcaH7Ql8buu79pt9ha5DOrUUTA32vNV2gazAOwEMdovOxdi3VbUXvd72nK-w8BmyjHvJLcmb1LuDV8Y7J2-N8PXtKli-L59l0mRguRUy4kbYwnFUGjAQtDDOGIReZYRtbgsw3XJtKiKKo0FZMCskzIVKrU7SAkosxuT3sdt599xii2rret_uXiueQFVDysthT7EAZ70LwaFXn60b7X8VADQLVIFANAtVR4L5zc-jUiPjPSy7LNCvFH_5ybYI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2605708287</pqid></control><display><type>article</type><title>Removing Atmospheric Turbulence Effects Via Geometric Distortion and Blur Representation</title><source>IEEE Electronic Library (IEL)</source><creator>Hua, Xia ; Pan, Chao ; Shi, Yu ; Liu, Jianguo ; Hong, Hanyu</creator><creatorcontrib>Hua, Xia ; Pan, Chao ; Shi, Yu ; Liu, Jianguo ; Hong, Hanyu</creatorcontrib><description>Removing the geometric distortion and space-time-varying blur caused by atmospheric turbulence from a given image sequence remains a challenge. Since geometric distortion and blur are two different kinds of distortions and interact with each other in the process of image restoration, it is difficult to extract the features that are useful to the restoration process when the images experience multiple distortions. In this article, we propose a new scheme based on geometric distortion and blur representation. The blur invariants and maximum gradient are used to represent the geometric distortion and sharpness of an image frame, respectively. The proposed scheme consists of three parts. First, two fast frame selection algorithms based on independent evaluations of the sharpness and geometric distortion are proposed to subsample a sharp subsequence and obtain a reference image. Next, to suppress the geometric distortion, a moment-blur-invariant-based method is presented to estimate the deformation vector between two degraded frames, and the selected sharp frames are registered to the reference image. Finally, a blind deconvolution method is applied to deblur the fused image, generating a final restoration result. Various experimental results show that the proposed method can effectively alleviate distortion and blur, as well as significantly improve the visual quality of real atmospheric turbulence-degraded images.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2020.3043627</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Atmospheric turbulence ; blur invariants ; Deformation ; Distortion ; Feature extraction ; frame selection ; Image edge detection ; Image quality ; Image reconstruction ; Image restoration ; Invariants ; nonrigid image registration ; Optical distortion ; Representations ; Restoration ; Sharpness ; Strain ; Turbulence effects</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022-01, Vol.60, p.1-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-2c9f7c21dc0c90a3c1cc1e235c1bf8096b2acd3377defd193925334fa4ef0e923</citedby><cites>FETCH-LOGICAL-c293t-2c9f7c21dc0c90a3c1cc1e235c1bf8096b2acd3377defd193925334fa4ef0e923</cites><orcidid>0000-0002-3620-3905 ; 0000-0002-7732-9766 ; 0000-0002-7279-1919</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9298458$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9298458$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hua, Xia</creatorcontrib><creatorcontrib>Pan, Chao</creatorcontrib><creatorcontrib>Shi, Yu</creatorcontrib><creatorcontrib>Liu, Jianguo</creatorcontrib><creatorcontrib>Hong, Hanyu</creatorcontrib><title>Removing Atmospheric Turbulence Effects Via Geometric Distortion and Blur Representation</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Removing the geometric distortion and space-time-varying blur caused by atmospheric turbulence from a given image sequence remains a challenge. Since geometric distortion and blur are two different kinds of distortions and interact with each other in the process of image restoration, it is difficult to extract the features that are useful to the restoration process when the images experience multiple distortions. In this article, we propose a new scheme based on geometric distortion and blur representation. The blur invariants and maximum gradient are used to represent the geometric distortion and sharpness of an image frame, respectively. The proposed scheme consists of three parts. First, two fast frame selection algorithms based on independent evaluations of the sharpness and geometric distortion are proposed to subsample a sharp subsequence and obtain a reference image. Next, to suppress the geometric distortion, a moment-blur-invariant-based method is presented to estimate the deformation vector between two degraded frames, and the selected sharp frames are registered to the reference image. Finally, a blind deconvolution method is applied to deblur the fused image, generating a final restoration result. Various experimental results show that the proposed method can effectively alleviate distortion and blur, as well as significantly improve the visual quality of real atmospheric turbulence-degraded images.</description><subject>Algorithms</subject><subject>Atmospheric turbulence</subject><subject>blur invariants</subject><subject>Deformation</subject><subject>Distortion</subject><subject>Feature extraction</subject><subject>frame selection</subject><subject>Image edge detection</subject><subject>Image quality</subject><subject>Image reconstruction</subject><subject>Image restoration</subject><subject>Invariants</subject><subject>nonrigid image registration</subject><subject>Optical distortion</subject><subject>Representations</subject><subject>Restoration</subject><subject>Sharpness</subject><subject>Strain</subject><subject>Turbulence effects</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEURYMoWKs_QNwEXE99SeYry1prFQpCreIupJkXndKZjElG8N_bocXVg8u598Eh5JrBhDGQd-vF6nXCgcNEQCpyXpyQEcuyMoE8TU_JCJjME15Kfk4uQtgCsDRjxYh8rLBxP3X7SaexcaH7Ql8buu79pt9ha5DOrUUTA32vNV2gazAOwEMdovOxdi3VbUXvd72nK-w8BmyjHvJLcmb1LuDV8Y7J2-N8PXtKli-L59l0mRguRUy4kbYwnFUGjAQtDDOGIReZYRtbgsw3XJtKiKKo0FZMCskzIVKrU7SAkosxuT3sdt599xii2rret_uXiueQFVDysthT7EAZ70LwaFXn60b7X8VADQLVIFANAtVR4L5zc-jUiPjPSy7LNCvFH_5ybYI</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Hua, Xia</creator><creator>Pan, Chao</creator><creator>Shi, Yu</creator><creator>Liu, Jianguo</creator><creator>Hong, Hanyu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3620-3905</orcidid><orcidid>https://orcid.org/0000-0002-7732-9766</orcidid><orcidid>https://orcid.org/0000-0002-7279-1919</orcidid></search><sort><creationdate>20220101</creationdate><title>Removing Atmospheric Turbulence Effects Via Geometric Distortion and Blur Representation</title><author>Hua, Xia ; Pan, Chao ; Shi, Yu ; Liu, Jianguo ; Hong, Hanyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-2c9f7c21dc0c90a3c1cc1e235c1bf8096b2acd3377defd193925334fa4ef0e923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Atmospheric turbulence</topic><topic>blur invariants</topic><topic>Deformation</topic><topic>Distortion</topic><topic>Feature extraction</topic><topic>frame selection</topic><topic>Image edge detection</topic><topic>Image quality</topic><topic>Image reconstruction</topic><topic>Image restoration</topic><topic>Invariants</topic><topic>nonrigid image registration</topic><topic>Optical distortion</topic><topic>Representations</topic><topic>Restoration</topic><topic>Sharpness</topic><topic>Strain</topic><topic>Turbulence effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hua, Xia</creatorcontrib><creatorcontrib>Pan, Chao</creatorcontrib><creatorcontrib>Shi, Yu</creatorcontrib><creatorcontrib>Liu, Jianguo</creatorcontrib><creatorcontrib>Hong, Hanyu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hua, Xia</au><au>Pan, Chao</au><au>Shi, Yu</au><au>Liu, Jianguo</au><au>Hong, Hanyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Removing Atmospheric Turbulence Effects Via Geometric Distortion and Blur Representation</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2022-01-01</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Removing the geometric distortion and space-time-varying blur caused by atmospheric turbulence from a given image sequence remains a challenge. Since geometric distortion and blur are two different kinds of distortions and interact with each other in the process of image restoration, it is difficult to extract the features that are useful to the restoration process when the images experience multiple distortions. In this article, we propose a new scheme based on geometric distortion and blur representation. The blur invariants and maximum gradient are used to represent the geometric distortion and sharpness of an image frame, respectively. The proposed scheme consists of three parts. First, two fast frame selection algorithms based on independent evaluations of the sharpness and geometric distortion are proposed to subsample a sharp subsequence and obtain a reference image. Next, to suppress the geometric distortion, a moment-blur-invariant-based method is presented to estimate the deformation vector between two degraded frames, and the selected sharp frames are registered to the reference image. Finally, a blind deconvolution method is applied to deblur the fused image, generating a final restoration result. Various experimental results show that the proposed method can effectively alleviate distortion and blur, as well as significantly improve the visual quality of real atmospheric turbulence-degraded images.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2020.3043627</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3620-3905</orcidid><orcidid>https://orcid.org/0000-0002-7732-9766</orcidid><orcidid>https://orcid.org/0000-0002-7279-1919</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2022-01, Vol.60, p.1-13 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TGRS_2020_3043627 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Atmospheric turbulence blur invariants Deformation Distortion Feature extraction frame selection Image edge detection Image quality Image reconstruction Image restoration Invariants nonrigid image registration Optical distortion Representations Restoration Sharpness Strain Turbulence effects |
title | Removing Atmospheric Turbulence Effects Via Geometric Distortion and Blur Representation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A31%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Removing%20Atmospheric%20Turbulence%20Effects%20Via%20Geometric%20Distortion%20and%20Blur%20Representation&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Hua,%20Xia&rft.date=2022-01-01&rft.volume=60&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2020.3043627&rft_dat=%3Cproquest_RIE%3E2605708287%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2605708287&rft_id=info:pmid/&rft_ieee_id=9298458&rfr_iscdi=true |