Impact of Soil Permittivity and Temperature Profile on L-Band Microwave Emission of Frozen Soil
An unexplored aspect of L-band microwave emission is the impact of soil moisture and soil temperature (SMST) profile dynamics on diurnal brightness temperature ( T_{\mathrm {B}} ) signatures of frozen soil. This study investigates this effect by comparing the T_{\mathrm {B}} simulations of layered...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2021-05, Vol.59 (5), p.4080-4093 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4093 |
---|---|
container_issue | 5 |
container_start_page | 4080 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 59 |
creator | Zheng, Donghai Li, Xin Zhao, Tianjie Wen, Jun van der Velde, Rogier Schwank, Mike Wang, Xin Wang, Zuoliang Su, Zhongbo |
description | An unexplored aspect of L-band microwave emission is the impact of soil moisture and soil temperature (SMST) profile dynamics on diurnal brightness temperature ( T_{\mathrm {B}} ) signatures of frozen soil. This study investigates this effect by comparing the T_{\mathrm {B}} simulations of layered ( T_{\mathrm {B,l}} ) and uniform ( T_{\mathrm {B,u}} ) soils using a newly developed integrated land emission model. The multilayer Wilheit model and the single-layer Fresnel model are adopted to compute the smooth soil reflectivity for the layered and uniform soils, respectively. A four-phase dielectric mixing model is used to calculate the soil permittivity ( \varepsilon _{s} ). A data set of concurrent ELBARA-III T_{\mathrm {B}} and SMST profile measurements performed in a seasonally frozen Tibetan meadow ecosystem is used for the analysis. The simulated T_{\mathrm {B,l}} considering SMST profile information captures well the ELBARA-III measurements with low biases (≤6 K) and high correlations ( R^{2}\ge0.88 ). T_{\mathrm {B,u}} produced based on the Fresnel model using the soil moisture of 2.5 cm is more consistent with the T_{\mathrm {B,l}} . The sensitivity test of averaging SMST profile below 2.5 cm leads to maximum differences of 2 K in T_{\mathrm {B,l}} simulations, indicating that the T_{\mathrm {B}} variations are primary dominated by the SMST dynamics at the surface layer. A sensitivity test of the Wilheit model to different \varepsilon _{s} parameterizations shows that the dielectric model of Zhang et al. is comparable to the fou |
doi_str_mv | 10.1109/TGRS.2020.3024971 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2020_3024971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9207846</ieee_id><sourcerecordid>2515854257</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-adbf5c99cd2f797b36a3db504fda0c5fde0a1ac36f19d5f992e60a415e8ce18d3</originalsourceid><addsrcrecordid>eNo9kE1PwjAYxxujiYh-AOOliedhX9ZtPSoBJMFIBM9N6Z4mJWyd7cDgp3cT4uk5_N-e_BC6p2REKZFP69nHasQIIyNOWCpzeoEGVIgiIVmaXqIBoTJLWCHZNbqJcUsITQXNB0jNq0abFnuLV97t8BJC5drWHVx7xLou8RqqBoJu9wHwMnjrdoB9jRfJS6--ORP8tz4AnlQuRtcpXdM0-B-o_wpv0ZXVuwh35ztEn9PJevyaLN5n8_HzIjGcZ22iy40VRkpTMpvLfMMzzcuNIKktNTHClkA01YZnlspSWCkZZESnVEBhgBYlH6LHU28T_NceYqu2fh_qblIxQUUhUibyzkVPru7rGANY1QRX6XBUlKieo-o5qp6jOnPsMg-njAOAf79kJC_SjP8C5hFvvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2515854257</pqid></control><display><type>article</type><title>Impact of Soil Permittivity and Temperature Profile on L-Band Microwave Emission of Frozen Soil</title><source>IEEE Electronic Library (IEL)</source><creator>Zheng, Donghai ; Li, Xin ; Zhao, Tianjie ; Wen, Jun ; van der Velde, Rogier ; Schwank, Mike ; Wang, Xin ; Wang, Zuoliang ; Su, Zhongbo</creator><creatorcontrib>Zheng, Donghai ; Li, Xin ; Zhao, Tianjie ; Wen, Jun ; van der Velde, Rogier ; Schwank, Mike ; Wang, Xin ; Wang, Zuoliang ; Su, Zhongbo</creatorcontrib><description><![CDATA[An unexplored aspect of L-band microwave emission is the impact of soil moisture and soil temperature (SMST) profile dynamics on diurnal brightness temperature (<inline-formula> <tex-math notation="LaTeX">T_{\mathrm {B}} </tex-math></inline-formula>) signatures of frozen soil. This study investigates this effect by comparing the <inline-formula> <tex-math notation="LaTeX">T_{\mathrm {B}} </tex-math></inline-formula> simulations of layered (<inline-formula> <tex-math notation="LaTeX">T_{\mathrm {B,l}} </tex-math></inline-formula>) and uniform (<inline-formula> <tex-math notation="LaTeX">T_{\mathrm {B,u}} </tex-math></inline-formula>) soils using a newly developed integrated land emission model. The multilayer Wilheit model and the single-layer Fresnel model are adopted to compute the smooth soil reflectivity for the layered and uniform soils, respectively. A four-phase dielectric mixing model is used to calculate the soil permittivity (<inline-formula> <tex-math notation="LaTeX">\varepsilon _{s} </tex-math></inline-formula>). A data set of concurrent ELBARA-III <inline-formula> <tex-math notation="LaTeX">T_{\mathrm {B}} </tex-math></inline-formula> and SMST profile measurements performed in a seasonally frozen Tibetan meadow ecosystem is used for the analysis. The simulated <inline-formula> <tex-math notation="LaTeX">T_{\mathrm {B,l}} </tex-math></inline-formula> considering SMST profile information captures well the ELBARA-III measurements with low biases (≤6 K) and high correlations (<inline-formula> <tex-math notation="LaTeX">R^{2}\ge0.88 </tex-math></inline-formula>). <inline-formula> <tex-math notation="LaTeX">T_{\mathrm {B,u}} </tex-math></inline-formula> produced based on the Fresnel model using the soil moisture of 2.5 cm is more consistent with the <inline-formula> <tex-math notation="LaTeX">T_{\mathrm {B,l}} </tex-math></inline-formula>. The sensitivity test of averaging SMST profile below 2.5 cm leads to maximum differences of 2 K in <inline-formula> <tex-math notation="LaTeX">T_{\mathrm {B,l}} </tex-math></inline-formula> simulations, indicating that the <inline-formula> <tex-math notation="LaTeX">T_{\mathrm {B}} </tex-math></inline-formula> variations are primary dominated by the SMST dynamics at the surface layer. A sensitivity test of the Wilheit model to different <inline-formula> <tex-math notation="LaTeX">\varepsilon _{s} </tex-math></inline-formula> parameterizations shows that the dielectric model of Zhang et al. is comparable to the four-phase dielectric model in simulating <inline-formula> <tex-math notation="LaTeX">T_{\mathrm {B,l}} </tex-math></inline-formula>, while the Mironov et al. 's model demonstrates larger biases for frozen soil with, on average, 2.2% clay content, 49.7% sand content, and a bulk density of 1 <inline-formula> <tex-math notation="LaTeX">\text{g}\cdot </tex-math></inline-formula>cm −3 .]]></description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2020.3024971</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Brightness temperature ; Bulk density ; Computational modeling ; Dielectrics ; Dynamics ; Emissions ; Frozen ground ; Frozen soil ; L-band ; L-band radiometry ; Microwave emission ; Monolayers ; multilayer soil emission model ; Multilayers ; Permittivity ; Reflectance ; Sea measurements ; Sensitivity ; Sensitivity analysis ; Simulation ; Soil ; Soil dynamics ; Soil investigations ; Soil layers ; Soil measurements ; Soil moisture ; soil moisture and soil temperature~(SMST) profile ; soil permittivity ; Soil temperature ; Surface layers ; Surface radiation temperature ; Temperature measurement ; Temperature profile ; Temperature profiles</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2021-05, Vol.59 (5), p.4080-4093</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-adbf5c99cd2f797b36a3db504fda0c5fde0a1ac36f19d5f992e60a415e8ce18d3</citedby><cites>FETCH-LOGICAL-c336t-adbf5c99cd2f797b36a3db504fda0c5fde0a1ac36f19d5f992e60a415e8ce18d3</cites><orcidid>0000-0003-2999-9818 ; 0000-0003-1151-3381 ; 0000-0002-0914-599X ; 0000-0003-1569-1564 ; 0000-0003-2157-4110 ; 0000-0001-7405-0252</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9207846$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9207846$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zheng, Donghai</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Zhao, Tianjie</creatorcontrib><creatorcontrib>Wen, Jun</creatorcontrib><creatorcontrib>van der Velde, Rogier</creatorcontrib><creatorcontrib>Schwank, Mike</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Wang, Zuoliang</creatorcontrib><creatorcontrib>Su, Zhongbo</creatorcontrib><title>Impact of Soil Permittivity and Temperature Profile on L-Band Microwave Emission of Frozen Soil</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description><![CDATA[An unexplored aspect of L-band microwave emission is the impact of soil moisture and soil temperature (SMST) profile dynamics on diurnal brightness temperature (<inline-formula> <tex-math notation="LaTeX">T_{\mathrm {B}} </tex-math></inline-formula>) signatures of frozen soil. This study investigates this effect by comparing the <inline-formula> <tex-math notation="LaTeX">T_{\mathrm {B}} </tex-math></inline-formula> simulations of layered (<inline-formula> <tex-math notation="LaTeX">T_{\mathrm {B,l}} </tex-math></inline-formula>) and uniform (<inline-formula> <tex-math notation="LaTeX">T_{\mathrm {B,u}} </tex-math></inline-formula>) soils using a newly developed integrated land emission model. The multilayer Wilheit model and the single-layer Fresnel model are adopted to compute the smooth soil reflectivity for the layered and uniform soils, respectively. A four-phase dielectric mixing model is used to calculate the soil permittivity (<inline-formula> <tex-math notation="LaTeX">\varepsilon _{s} </tex-math></inline-formula>). A data set of concurrent ELBARA-III <inline-formula> <tex-math notation="LaTeX">T_{\mathrm {B}} </tex-math></inline-formula> and SMST profile measurements performed in a seasonally frozen Tibetan meadow ecosystem is used for the analysis. The simulated <inline-formula> <tex-math notation="LaTeX">T_{\mathrm {B,l}} </tex-math></inline-formula> considering SMST profile information captures well the ELBARA-III measurements with low biases (≤6 K) and high correlations (<inline-formula> <tex-math notation="LaTeX">R^{2}\ge0.88 </tex-math></inline-formula>). <inline-formula> <tex-math notation="LaTeX">T_{\mathrm {B,u}} </tex-math></inline-formula> produced based on the Fresnel model using the soil moisture of 2.5 cm is more consistent with the <inline-formula> <tex-math notation="LaTeX">T_{\mathrm {B,l}} </tex-math></inline-formula>. The sensitivity test of averaging SMST profile below 2.5 cm leads to maximum differences of 2 K in <inline-formula> <tex-math notation="LaTeX">T_{\mathrm {B,l}} </tex-math></inline-formula> simulations, indicating that the <inline-formula> <tex-math notation="LaTeX">T_{\mathrm {B}} </tex-math></inline-formula> variations are primary dominated by the SMST dynamics at the surface layer. A sensitivity test of the Wilheit model to different <inline-formula> <tex-math notation="LaTeX">\varepsilon _{s} </tex-math></inline-formula> parameterizations shows that the dielectric model of Zhang et al. is comparable to the four-phase dielectric model in simulating <inline-formula> <tex-math notation="LaTeX">T_{\mathrm {B,l}} </tex-math></inline-formula>, while the Mironov et al. 's model demonstrates larger biases for frozen soil with, on average, 2.2% clay content, 49.7% sand content, and a bulk density of 1 <inline-formula> <tex-math notation="LaTeX">\text{g}\cdot </tex-math></inline-formula>cm −3 .]]></description><subject>Brightness temperature</subject><subject>Bulk density</subject><subject>Computational modeling</subject><subject>Dielectrics</subject><subject>Dynamics</subject><subject>Emissions</subject><subject>Frozen ground</subject><subject>Frozen soil</subject><subject>L-band</subject><subject>L-band radiometry</subject><subject>Microwave emission</subject><subject>Monolayers</subject><subject>multilayer soil emission model</subject><subject>Multilayers</subject><subject>Permittivity</subject><subject>Reflectance</subject><subject>Sea measurements</subject><subject>Sensitivity</subject><subject>Sensitivity analysis</subject><subject>Simulation</subject><subject>Soil</subject><subject>Soil dynamics</subject><subject>Soil investigations</subject><subject>Soil layers</subject><subject>Soil measurements</subject><subject>Soil moisture</subject><subject>soil moisture and soil temperature~(SMST) profile</subject><subject>soil permittivity</subject><subject>Soil temperature</subject><subject>Surface layers</subject><subject>Surface radiation temperature</subject><subject>Temperature measurement</subject><subject>Temperature profile</subject><subject>Temperature profiles</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PwjAYxxujiYh-AOOliedhX9ZtPSoBJMFIBM9N6Z4mJWyd7cDgp3cT4uk5_N-e_BC6p2REKZFP69nHasQIIyNOWCpzeoEGVIgiIVmaXqIBoTJLWCHZNbqJcUsITQXNB0jNq0abFnuLV97t8BJC5drWHVx7xLou8RqqBoJu9wHwMnjrdoB9jRfJS6--ORP8tz4AnlQuRtcpXdM0-B-o_wpv0ZXVuwh35ztEn9PJevyaLN5n8_HzIjGcZ22iy40VRkpTMpvLfMMzzcuNIKktNTHClkA01YZnlspSWCkZZESnVEBhgBYlH6LHU28T_NceYqu2fh_qblIxQUUhUibyzkVPru7rGANY1QRX6XBUlKieo-o5qp6jOnPsMg-njAOAf79kJC_SjP8C5hFvvg</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Zheng, Donghai</creator><creator>Li, Xin</creator><creator>Zhao, Tianjie</creator><creator>Wen, Jun</creator><creator>van der Velde, Rogier</creator><creator>Schwank, Mike</creator><creator>Wang, Xin</creator><creator>Wang, Zuoliang</creator><creator>Su, Zhongbo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2999-9818</orcidid><orcidid>https://orcid.org/0000-0003-1151-3381</orcidid><orcidid>https://orcid.org/0000-0002-0914-599X</orcidid><orcidid>https://orcid.org/0000-0003-1569-1564</orcidid><orcidid>https://orcid.org/0000-0003-2157-4110</orcidid><orcidid>https://orcid.org/0000-0001-7405-0252</orcidid></search><sort><creationdate>20210501</creationdate><title>Impact of Soil Permittivity and Temperature Profile on L-Band Microwave Emission of Frozen Soil</title><author>Zheng, Donghai ; Li, Xin ; Zhao, Tianjie ; Wen, Jun ; van der Velde, Rogier ; Schwank, Mike ; Wang, Xin ; Wang, Zuoliang ; Su, Zhongbo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-adbf5c99cd2f797b36a3db504fda0c5fde0a1ac36f19d5f992e60a415e8ce18d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Brightness temperature</topic><topic>Bulk density</topic><topic>Computational modeling</topic><topic>Dielectrics</topic><topic>Dynamics</topic><topic>Emissions</topic><topic>Frozen ground</topic><topic>Frozen soil</topic><topic>L-band</topic><topic>L-band radiometry</topic><topic>Microwave emission</topic><topic>Monolayers</topic><topic>multilayer soil emission model</topic><topic>Multilayers</topic><topic>Permittivity</topic><topic>Reflectance</topic><topic>Sea measurements</topic><topic>Sensitivity</topic><topic>Sensitivity analysis</topic><topic>Simulation</topic><topic>Soil</topic><topic>Soil dynamics</topic><topic>Soil investigations</topic><topic>Soil layers</topic><topic>Soil measurements</topic><topic>Soil moisture</topic><topic>soil moisture and soil temperature~(SMST) profile</topic><topic>soil permittivity</topic><topic>Soil temperature</topic><topic>Surface layers</topic><topic>Surface radiation temperature</topic><topic>Temperature measurement</topic><topic>Temperature profile</topic><topic>Temperature profiles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Donghai</creatorcontrib><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Zhao, Tianjie</creatorcontrib><creatorcontrib>Wen, Jun</creatorcontrib><creatorcontrib>van der Velde, Rogier</creatorcontrib><creatorcontrib>Schwank, Mike</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Wang, Zuoliang</creatorcontrib><creatorcontrib>Su, Zhongbo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zheng, Donghai</au><au>Li, Xin</au><au>Zhao, Tianjie</au><au>Wen, Jun</au><au>van der Velde, Rogier</au><au>Schwank, Mike</au><au>Wang, Xin</au><au>Wang, Zuoliang</au><au>Su, Zhongbo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of Soil Permittivity and Temperature Profile on L-Band Microwave Emission of Frozen Soil</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>59</volume><issue>5</issue><spage>4080</spage><epage>4093</epage><pages>4080-4093</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract><![CDATA[An unexplored aspect of L-band microwave emission is the impact of soil moisture and soil temperature (SMST) profile dynamics on diurnal brightness temperature (<inline-formula> <tex-math notation="LaTeX">T_{\mathrm {B}} </tex-math></inline-formula>) signatures of frozen soil. This study investigates this effect by comparing the <inline-formula> <tex-math notation="LaTeX">T_{\mathrm {B}} </tex-math></inline-formula> simulations of layered (<inline-formula> <tex-math notation="LaTeX">T_{\mathrm {B,l}} </tex-math></inline-formula>) and uniform (<inline-formula> <tex-math notation="LaTeX">T_{\mathrm {B,u}} </tex-math></inline-formula>) soils using a newly developed integrated land emission model. The multilayer Wilheit model and the single-layer Fresnel model are adopted to compute the smooth soil reflectivity for the layered and uniform soils, respectively. A four-phase dielectric mixing model is used to calculate the soil permittivity (<inline-formula> <tex-math notation="LaTeX">\varepsilon _{s} </tex-math></inline-formula>). A data set of concurrent ELBARA-III <inline-formula> <tex-math notation="LaTeX">T_{\mathrm {B}} </tex-math></inline-formula> and SMST profile measurements performed in a seasonally frozen Tibetan meadow ecosystem is used for the analysis. The simulated <inline-formula> <tex-math notation="LaTeX">T_{\mathrm {B,l}} </tex-math></inline-formula> considering SMST profile information captures well the ELBARA-III measurements with low biases (≤6 K) and high correlations (<inline-formula> <tex-math notation="LaTeX">R^{2}\ge0.88 </tex-math></inline-formula>). <inline-formula> <tex-math notation="LaTeX">T_{\mathrm {B,u}} </tex-math></inline-formula> produced based on the Fresnel model using the soil moisture of 2.5 cm is more consistent with the <inline-formula> <tex-math notation="LaTeX">T_{\mathrm {B,l}} </tex-math></inline-formula>. The sensitivity test of averaging SMST profile below 2.5 cm leads to maximum differences of 2 K in <inline-formula> <tex-math notation="LaTeX">T_{\mathrm {B,l}} </tex-math></inline-formula> simulations, indicating that the <inline-formula> <tex-math notation="LaTeX">T_{\mathrm {B}} </tex-math></inline-formula> variations are primary dominated by the SMST dynamics at the surface layer. A sensitivity test of the Wilheit model to different <inline-formula> <tex-math notation="LaTeX">\varepsilon _{s} </tex-math></inline-formula> parameterizations shows that the dielectric model of Zhang et al. is comparable to the four-phase dielectric model in simulating <inline-formula> <tex-math notation="LaTeX">T_{\mathrm {B,l}} </tex-math></inline-formula>, while the Mironov et al. 's model demonstrates larger biases for frozen soil with, on average, 2.2% clay content, 49.7% sand content, and a bulk density of 1 <inline-formula> <tex-math notation="LaTeX">\text{g}\cdot </tex-math></inline-formula>cm −3 .]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2020.3024971</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2999-9818</orcidid><orcidid>https://orcid.org/0000-0003-1151-3381</orcidid><orcidid>https://orcid.org/0000-0002-0914-599X</orcidid><orcidid>https://orcid.org/0000-0003-1569-1564</orcidid><orcidid>https://orcid.org/0000-0003-2157-4110</orcidid><orcidid>https://orcid.org/0000-0001-7405-0252</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2021-05, Vol.59 (5), p.4080-4093 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TGRS_2020_3024971 |
source | IEEE Electronic Library (IEL) |
subjects | Brightness temperature Bulk density Computational modeling Dielectrics Dynamics Emissions Frozen ground Frozen soil L-band L-band radiometry Microwave emission Monolayers multilayer soil emission model Multilayers Permittivity Reflectance Sea measurements Sensitivity Sensitivity analysis Simulation Soil Soil dynamics Soil investigations Soil layers Soil measurements Soil moisture soil moisture and soil temperature~(SMST) profile soil permittivity Soil temperature Surface layers Surface radiation temperature Temperature measurement Temperature profile Temperature profiles |
title | Impact of Soil Permittivity and Temperature Profile on L-Band Microwave Emission of Frozen Soil |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T01%3A19%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20Soil%20Permittivity%20and%20Temperature%20Profile%20on%20L-Band%20Microwave%20Emission%20of%20Frozen%20Soil&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Zheng,%20Donghai&rft.date=2021-05-01&rft.volume=59&rft.issue=5&rft.spage=4080&rft.epage=4093&rft.pages=4080-4093&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2020.3024971&rft_dat=%3Cproquest_RIE%3E2515854257%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2515854257&rft_id=info:pmid/&rft_ieee_id=9207846&rfr_iscdi=true |