Spectral Observation Theory and Beam Debroadening Algorithm for Atmospheric Radar

In order to measure the variance of wind velocity, which is contributed from turbulence, via radar observations, it is necessary to remove the unwanted contribution from strong horizontal velocity components through the finite beamwidth of the radar. This effect is referred to as beam broadening. Al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2020-10, Vol.58 (10), p.6767-6775
Hauptverfasser: Nishimura, Koji, Kohma, Masashi, Sato, Kaoru, Sato, Toru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6775
container_issue 10
container_start_page 6767
container_title IEEE transactions on geoscience and remote sensing
container_volume 58
creator Nishimura, Koji
Kohma, Masashi
Sato, Kaoru
Sato, Toru
description In order to measure the variance of wind velocity, which is contributed from turbulence, via radar observations, it is necessary to remove the unwanted contribution from strong horizontal velocity components through the finite beamwidth of the radar. This effect is referred to as beam broadening. Although the amount of beam broadening has thus far been calculated based on the approximating assumption that the pattern of the beam is rotationally symmetric and has very low sidelobes, we need to take a more theoretical approach to radar-one that does not have a simple beam pattern like the Antarctic Program of the Antarctic Syowa Station (PANSY) radar (69S, 39E). In this article, we clarify the theoretical relationship in a very simple form between the turbulence spectrum, which is directly associated with the variance of turbulence, two-way beam patterns, and the observed spectrum, using autocorrelation functions (ACFs). The theory is thoroughly universal and applicable to any type of atmospheric radar, such that we can quantitatively analyze radar observation systems. Furthermore, we propose a "debroadening" algorithm based directly on this theory and from calculations of the general maximum likelihood (ML). We performed numerical simulations that validate our theory and the algorithm.
doi_str_mv 10.1109/TGRS.2020.2970200
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2020_2970200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9047136</ieee_id><sourcerecordid>2447336680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-4cf91fa7642209c9da229eb2710cfe68571b836eb5b8a5f49b27522f672c0c3b3</originalsourceid><addsrcrecordid>eNo9kFFPwjAUhRujiYj-AONLE5-Hbde16yMiogkJEfC56bpbGGHrbIcJ_94RiE_n4X7n3ORD6JGSEaVEvaxny9WIEUZGTMk-yBUa0CzLEyI4v0YDQpVIWK7YLbqLcUcI5RmVA_S1asF2wezxoogQfk1X-Qavt-DDEZumxK9gavwGRfCmhKZqNni83_hQddsaOx_wuKt9bLcQKouXpjThHt04s4_wcMkh-n6fricfyXwx-5yM54nlXHQJt05RZ6TgjBFlVWkYU1AwSYl1IPJM0iJPBRRZkZvMcdWfMsackMwSmxbpED2fd9vgfw4QO73zh9D0LzXjXKapEDnpKXqmbPAxBnC6DVVtwlFTok_m9MmcPpnTF3N95-ncqQDgn1eES5qK9A-BfWmT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2447336680</pqid></control><display><type>article</type><title>Spectral Observation Theory and Beam Debroadening Algorithm for Atmospheric Radar</title><source>IEEE Xplore</source><creator>Nishimura, Koji ; Kohma, Masashi ; Sato, Kaoru ; Sato, Toru</creator><creatorcontrib>Nishimura, Koji ; Kohma, Masashi ; Sato, Kaoru ; Sato, Toru</creatorcontrib><description>In order to measure the variance of wind velocity, which is contributed from turbulence, via radar observations, it is necessary to remove the unwanted contribution from strong horizontal velocity components through the finite beamwidth of the radar. This effect is referred to as beam broadening. Although the amount of beam broadening has thus far been calculated based on the approximating assumption that the pattern of the beam is rotationally symmetric and has very low sidelobes, we need to take a more theoretical approach to radar-one that does not have a simple beam pattern like the Antarctic Program of the Antarctic Syowa Station (PANSY) radar (69S, 39E). In this article, we clarify the theoretical relationship in a very simple form between the turbulence spectrum, which is directly associated with the variance of turbulence, two-way beam patterns, and the observed spectrum, using autocorrelation functions (ACFs). The theory is thoroughly universal and applicable to any type of atmospheric radar, such that we can quantitatively analyze radar observation systems. Furthermore, we propose a "debroadening" algorithm based directly on this theory and from calculations of the general maximum likelihood (ML). We performed numerical simulations that validate our theory and the algorithm.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2020.2970200</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Antarctica ; Atmospheric measurements ; Atmospheric radar ; Autocorrelation ; Autocorrelation functions ; beam broadening ; Computer simulation ; Correlation ; debroadening ; Mathematical analysis ; mesosphere-stratosphere-troposphere (MST) radar ; Polar environments ; Radar ; Radar antennas ; Radar remote sensing ; Sidelobes ; Theories ; Turbulence ; Velocity ; Wind speed</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2020-10, Vol.58 (10), p.6767-6775</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-4cf91fa7642209c9da229eb2710cfe68571b836eb5b8a5f49b27522f672c0c3b3</citedby><cites>FETCH-LOGICAL-c446t-4cf91fa7642209c9da229eb2710cfe68571b836eb5b8a5f49b27522f672c0c3b3</cites><orcidid>0000-0001-8824-9844 ; 0000-0002-6225-6066</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9047136$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Nishimura, Koji</creatorcontrib><creatorcontrib>Kohma, Masashi</creatorcontrib><creatorcontrib>Sato, Kaoru</creatorcontrib><creatorcontrib>Sato, Toru</creatorcontrib><title>Spectral Observation Theory and Beam Debroadening Algorithm for Atmospheric Radar</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>In order to measure the variance of wind velocity, which is contributed from turbulence, via radar observations, it is necessary to remove the unwanted contribution from strong horizontal velocity components through the finite beamwidth of the radar. This effect is referred to as beam broadening. Although the amount of beam broadening has thus far been calculated based on the approximating assumption that the pattern of the beam is rotationally symmetric and has very low sidelobes, we need to take a more theoretical approach to radar-one that does not have a simple beam pattern like the Antarctic Program of the Antarctic Syowa Station (PANSY) radar (69S, 39E). In this article, we clarify the theoretical relationship in a very simple form between the turbulence spectrum, which is directly associated with the variance of turbulence, two-way beam patterns, and the observed spectrum, using autocorrelation functions (ACFs). The theory is thoroughly universal and applicable to any type of atmospheric radar, such that we can quantitatively analyze radar observation systems. Furthermore, we propose a "debroadening" algorithm based directly on this theory and from calculations of the general maximum likelihood (ML). We performed numerical simulations that validate our theory and the algorithm.</description><subject>Algorithms</subject><subject>Antarctica</subject><subject>Atmospheric measurements</subject><subject>Atmospheric radar</subject><subject>Autocorrelation</subject><subject>Autocorrelation functions</subject><subject>beam broadening</subject><subject>Computer simulation</subject><subject>Correlation</subject><subject>debroadening</subject><subject>Mathematical analysis</subject><subject>mesosphere-stratosphere-troposphere (MST) radar</subject><subject>Polar environments</subject><subject>Radar</subject><subject>Radar antennas</subject><subject>Radar remote sensing</subject><subject>Sidelobes</subject><subject>Theories</subject><subject>Turbulence</subject><subject>Velocity</subject><subject>Wind speed</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kFFPwjAUhRujiYj-AONLE5-Hbde16yMiogkJEfC56bpbGGHrbIcJ_94RiE_n4X7n3ORD6JGSEaVEvaxny9WIEUZGTMk-yBUa0CzLEyI4v0YDQpVIWK7YLbqLcUcI5RmVA_S1asF2wezxoogQfk1X-Qavt-DDEZumxK9gavwGRfCmhKZqNni83_hQddsaOx_wuKt9bLcQKouXpjThHt04s4_wcMkh-n6fricfyXwx-5yM54nlXHQJt05RZ6TgjBFlVWkYU1AwSYl1IPJM0iJPBRRZkZvMcdWfMsackMwSmxbpED2fd9vgfw4QO73zh9D0LzXjXKapEDnpKXqmbPAxBnC6DVVtwlFTok_m9MmcPpnTF3N95-ncqQDgn1eES5qK9A-BfWmT</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Nishimura, Koji</creator><creator>Kohma, Masashi</creator><creator>Sato, Kaoru</creator><creator>Sato, Toru</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8824-9844</orcidid><orcidid>https://orcid.org/0000-0002-6225-6066</orcidid></search><sort><creationdate>20201001</creationdate><title>Spectral Observation Theory and Beam Debroadening Algorithm for Atmospheric Radar</title><author>Nishimura, Koji ; Kohma, Masashi ; Sato, Kaoru ; Sato, Toru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-4cf91fa7642209c9da229eb2710cfe68571b836eb5b8a5f49b27522f672c0c3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Antarctica</topic><topic>Atmospheric measurements</topic><topic>Atmospheric radar</topic><topic>Autocorrelation</topic><topic>Autocorrelation functions</topic><topic>beam broadening</topic><topic>Computer simulation</topic><topic>Correlation</topic><topic>debroadening</topic><topic>Mathematical analysis</topic><topic>mesosphere-stratosphere-troposphere (MST) radar</topic><topic>Polar environments</topic><topic>Radar</topic><topic>Radar antennas</topic><topic>Radar remote sensing</topic><topic>Sidelobes</topic><topic>Theories</topic><topic>Turbulence</topic><topic>Velocity</topic><topic>Wind speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nishimura, Koji</creatorcontrib><creatorcontrib>Kohma, Masashi</creatorcontrib><creatorcontrib>Sato, Kaoru</creatorcontrib><creatorcontrib>Sato, Toru</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nishimura, Koji</au><au>Kohma, Masashi</au><au>Sato, Kaoru</au><au>Sato, Toru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral Observation Theory and Beam Debroadening Algorithm for Atmospheric Radar</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>58</volume><issue>10</issue><spage>6767</spage><epage>6775</epage><pages>6767-6775</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>In order to measure the variance of wind velocity, which is contributed from turbulence, via radar observations, it is necessary to remove the unwanted contribution from strong horizontal velocity components through the finite beamwidth of the radar. This effect is referred to as beam broadening. Although the amount of beam broadening has thus far been calculated based on the approximating assumption that the pattern of the beam is rotationally symmetric and has very low sidelobes, we need to take a more theoretical approach to radar-one that does not have a simple beam pattern like the Antarctic Program of the Antarctic Syowa Station (PANSY) radar (69S, 39E). In this article, we clarify the theoretical relationship in a very simple form between the turbulence spectrum, which is directly associated with the variance of turbulence, two-way beam patterns, and the observed spectrum, using autocorrelation functions (ACFs). The theory is thoroughly universal and applicable to any type of atmospheric radar, such that we can quantitatively analyze radar observation systems. Furthermore, we propose a "debroadening" algorithm based directly on this theory and from calculations of the general maximum likelihood (ML). We performed numerical simulations that validate our theory and the algorithm.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2020.2970200</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8824-9844</orcidid><orcidid>https://orcid.org/0000-0002-6225-6066</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2020-10, Vol.58 (10), p.6767-6775
issn 0196-2892
1558-0644
language eng
recordid cdi_crossref_primary_10_1109_TGRS_2020_2970200
source IEEE Xplore
subjects Algorithms
Antarctica
Atmospheric measurements
Atmospheric radar
Autocorrelation
Autocorrelation functions
beam broadening
Computer simulation
Correlation
debroadening
Mathematical analysis
mesosphere-stratosphere-troposphere (MST) radar
Polar environments
Radar
Radar antennas
Radar remote sensing
Sidelobes
Theories
Turbulence
Velocity
Wind speed
title Spectral Observation Theory and Beam Debroadening Algorithm for Atmospheric Radar
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A46%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20Observation%20Theory%20and%20Beam%20Debroadening%20Algorithm%20for%20Atmospheric%20Radar&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Nishimura,%20Koji&rft.date=2020-10-01&rft.volume=58&rft.issue=10&rft.spage=6767&rft.epage=6775&rft.pages=6767-6775&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2020.2970200&rft_dat=%3Cproquest_cross%3E2447336680%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2447336680&rft_id=info:pmid/&rft_ieee_id=9047136&rfr_iscdi=true