Spectral Observation Theory and Beam Debroadening Algorithm for Atmospheric Radar
In order to measure the variance of wind velocity, which is contributed from turbulence, via radar observations, it is necessary to remove the unwanted contribution from strong horizontal velocity components through the finite beamwidth of the radar. This effect is referred to as beam broadening. Al...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2020-10, Vol.58 (10), p.6767-6775 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6775 |
---|---|
container_issue | 10 |
container_start_page | 6767 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 58 |
creator | Nishimura, Koji Kohma, Masashi Sato, Kaoru Sato, Toru |
description | In order to measure the variance of wind velocity, which is contributed from turbulence, via radar observations, it is necessary to remove the unwanted contribution from strong horizontal velocity components through the finite beamwidth of the radar. This effect is referred to as beam broadening. Although the amount of beam broadening has thus far been calculated based on the approximating assumption that the pattern of the beam is rotationally symmetric and has very low sidelobes, we need to take a more theoretical approach to radar-one that does not have a simple beam pattern like the Antarctic Program of the Antarctic Syowa Station (PANSY) radar (69S, 39E). In this article, we clarify the theoretical relationship in a very simple form between the turbulence spectrum, which is directly associated with the variance of turbulence, two-way beam patterns, and the observed spectrum, using autocorrelation functions (ACFs). The theory is thoroughly universal and applicable to any type of atmospheric radar, such that we can quantitatively analyze radar observation systems. Furthermore, we propose a "debroadening" algorithm based directly on this theory and from calculations of the general maximum likelihood (ML). We performed numerical simulations that validate our theory and the algorithm. |
doi_str_mv | 10.1109/TGRS.2020.2970200 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2020_2970200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9047136</ieee_id><sourcerecordid>2447336680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-4cf91fa7642209c9da229eb2710cfe68571b836eb5b8a5f49b27522f672c0c3b3</originalsourceid><addsrcrecordid>eNo9kFFPwjAUhRujiYj-AONLE5-Hbde16yMiogkJEfC56bpbGGHrbIcJ_94RiE_n4X7n3ORD6JGSEaVEvaxny9WIEUZGTMk-yBUa0CzLEyI4v0YDQpVIWK7YLbqLcUcI5RmVA_S1asF2wezxoogQfk1X-Qavt-DDEZumxK9gavwGRfCmhKZqNni83_hQddsaOx_wuKt9bLcQKouXpjThHt04s4_wcMkh-n6fricfyXwx-5yM54nlXHQJt05RZ6TgjBFlVWkYU1AwSYl1IPJM0iJPBRRZkZvMcdWfMsackMwSmxbpED2fd9vgfw4QO73zh9D0LzXjXKapEDnpKXqmbPAxBnC6DVVtwlFTok_m9MmcPpnTF3N95-ncqQDgn1eES5qK9A-BfWmT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2447336680</pqid></control><display><type>article</type><title>Spectral Observation Theory and Beam Debroadening Algorithm for Atmospheric Radar</title><source>IEEE Xplore</source><creator>Nishimura, Koji ; Kohma, Masashi ; Sato, Kaoru ; Sato, Toru</creator><creatorcontrib>Nishimura, Koji ; Kohma, Masashi ; Sato, Kaoru ; Sato, Toru</creatorcontrib><description>In order to measure the variance of wind velocity, which is contributed from turbulence, via radar observations, it is necessary to remove the unwanted contribution from strong horizontal velocity components through the finite beamwidth of the radar. This effect is referred to as beam broadening. Although the amount of beam broadening has thus far been calculated based on the approximating assumption that the pattern of the beam is rotationally symmetric and has very low sidelobes, we need to take a more theoretical approach to radar-one that does not have a simple beam pattern like the Antarctic Program of the Antarctic Syowa Station (PANSY) radar (69S, 39E). In this article, we clarify the theoretical relationship in a very simple form between the turbulence spectrum, which is directly associated with the variance of turbulence, two-way beam patterns, and the observed spectrum, using autocorrelation functions (ACFs). The theory is thoroughly universal and applicable to any type of atmospheric radar, such that we can quantitatively analyze radar observation systems. Furthermore, we propose a "debroadening" algorithm based directly on this theory and from calculations of the general maximum likelihood (ML). We performed numerical simulations that validate our theory and the algorithm.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2020.2970200</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Antarctica ; Atmospheric measurements ; Atmospheric radar ; Autocorrelation ; Autocorrelation functions ; beam broadening ; Computer simulation ; Correlation ; debroadening ; Mathematical analysis ; mesosphere-stratosphere-troposphere (MST) radar ; Polar environments ; Radar ; Radar antennas ; Radar remote sensing ; Sidelobes ; Theories ; Turbulence ; Velocity ; Wind speed</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2020-10, Vol.58 (10), p.6767-6775</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-4cf91fa7642209c9da229eb2710cfe68571b836eb5b8a5f49b27522f672c0c3b3</citedby><cites>FETCH-LOGICAL-c446t-4cf91fa7642209c9da229eb2710cfe68571b836eb5b8a5f49b27522f672c0c3b3</cites><orcidid>0000-0001-8824-9844 ; 0000-0002-6225-6066</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9047136$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Nishimura, Koji</creatorcontrib><creatorcontrib>Kohma, Masashi</creatorcontrib><creatorcontrib>Sato, Kaoru</creatorcontrib><creatorcontrib>Sato, Toru</creatorcontrib><title>Spectral Observation Theory and Beam Debroadening Algorithm for Atmospheric Radar</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>In order to measure the variance of wind velocity, which is contributed from turbulence, via radar observations, it is necessary to remove the unwanted contribution from strong horizontal velocity components through the finite beamwidth of the radar. This effect is referred to as beam broadening. Although the amount of beam broadening has thus far been calculated based on the approximating assumption that the pattern of the beam is rotationally symmetric and has very low sidelobes, we need to take a more theoretical approach to radar-one that does not have a simple beam pattern like the Antarctic Program of the Antarctic Syowa Station (PANSY) radar (69S, 39E). In this article, we clarify the theoretical relationship in a very simple form between the turbulence spectrum, which is directly associated with the variance of turbulence, two-way beam patterns, and the observed spectrum, using autocorrelation functions (ACFs). The theory is thoroughly universal and applicable to any type of atmospheric radar, such that we can quantitatively analyze radar observation systems. Furthermore, we propose a "debroadening" algorithm based directly on this theory and from calculations of the general maximum likelihood (ML). We performed numerical simulations that validate our theory and the algorithm.</description><subject>Algorithms</subject><subject>Antarctica</subject><subject>Atmospheric measurements</subject><subject>Atmospheric radar</subject><subject>Autocorrelation</subject><subject>Autocorrelation functions</subject><subject>beam broadening</subject><subject>Computer simulation</subject><subject>Correlation</subject><subject>debroadening</subject><subject>Mathematical analysis</subject><subject>mesosphere-stratosphere-troposphere (MST) radar</subject><subject>Polar environments</subject><subject>Radar</subject><subject>Radar antennas</subject><subject>Radar remote sensing</subject><subject>Sidelobes</subject><subject>Theories</subject><subject>Turbulence</subject><subject>Velocity</subject><subject>Wind speed</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kFFPwjAUhRujiYj-AONLE5-Hbde16yMiogkJEfC56bpbGGHrbIcJ_94RiE_n4X7n3ORD6JGSEaVEvaxny9WIEUZGTMk-yBUa0CzLEyI4v0YDQpVIWK7YLbqLcUcI5RmVA_S1asF2wezxoogQfk1X-Qavt-DDEZumxK9gavwGRfCmhKZqNni83_hQddsaOx_wuKt9bLcQKouXpjThHt04s4_wcMkh-n6fricfyXwx-5yM54nlXHQJt05RZ6TgjBFlVWkYU1AwSYl1IPJM0iJPBRRZkZvMcdWfMsackMwSmxbpED2fd9vgfw4QO73zh9D0LzXjXKapEDnpKXqmbPAxBnC6DVVtwlFTok_m9MmcPpnTF3N95-ncqQDgn1eES5qK9A-BfWmT</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Nishimura, Koji</creator><creator>Kohma, Masashi</creator><creator>Sato, Kaoru</creator><creator>Sato, Toru</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8824-9844</orcidid><orcidid>https://orcid.org/0000-0002-6225-6066</orcidid></search><sort><creationdate>20201001</creationdate><title>Spectral Observation Theory and Beam Debroadening Algorithm for Atmospheric Radar</title><author>Nishimura, Koji ; Kohma, Masashi ; Sato, Kaoru ; Sato, Toru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-4cf91fa7642209c9da229eb2710cfe68571b836eb5b8a5f49b27522f672c0c3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Antarctica</topic><topic>Atmospheric measurements</topic><topic>Atmospheric radar</topic><topic>Autocorrelation</topic><topic>Autocorrelation functions</topic><topic>beam broadening</topic><topic>Computer simulation</topic><topic>Correlation</topic><topic>debroadening</topic><topic>Mathematical analysis</topic><topic>mesosphere-stratosphere-troposphere (MST) radar</topic><topic>Polar environments</topic><topic>Radar</topic><topic>Radar antennas</topic><topic>Radar remote sensing</topic><topic>Sidelobes</topic><topic>Theories</topic><topic>Turbulence</topic><topic>Velocity</topic><topic>Wind speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nishimura, Koji</creatorcontrib><creatorcontrib>Kohma, Masashi</creatorcontrib><creatorcontrib>Sato, Kaoru</creatorcontrib><creatorcontrib>Sato, Toru</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nishimura, Koji</au><au>Kohma, Masashi</au><au>Sato, Kaoru</au><au>Sato, Toru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral Observation Theory and Beam Debroadening Algorithm for Atmospheric Radar</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>58</volume><issue>10</issue><spage>6767</spage><epage>6775</epage><pages>6767-6775</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>In order to measure the variance of wind velocity, which is contributed from turbulence, via radar observations, it is necessary to remove the unwanted contribution from strong horizontal velocity components through the finite beamwidth of the radar. This effect is referred to as beam broadening. Although the amount of beam broadening has thus far been calculated based on the approximating assumption that the pattern of the beam is rotationally symmetric and has very low sidelobes, we need to take a more theoretical approach to radar-one that does not have a simple beam pattern like the Antarctic Program of the Antarctic Syowa Station (PANSY) radar (69S, 39E). In this article, we clarify the theoretical relationship in a very simple form between the turbulence spectrum, which is directly associated with the variance of turbulence, two-way beam patterns, and the observed spectrum, using autocorrelation functions (ACFs). The theory is thoroughly universal and applicable to any type of atmospheric radar, such that we can quantitatively analyze radar observation systems. Furthermore, we propose a "debroadening" algorithm based directly on this theory and from calculations of the general maximum likelihood (ML). We performed numerical simulations that validate our theory and the algorithm.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2020.2970200</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8824-9844</orcidid><orcidid>https://orcid.org/0000-0002-6225-6066</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2020-10, Vol.58 (10), p.6767-6775 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TGRS_2020_2970200 |
source | IEEE Xplore |
subjects | Algorithms Antarctica Atmospheric measurements Atmospheric radar Autocorrelation Autocorrelation functions beam broadening Computer simulation Correlation debroadening Mathematical analysis mesosphere-stratosphere-troposphere (MST) radar Polar environments Radar Radar antennas Radar remote sensing Sidelobes Theories Turbulence Velocity Wind speed |
title | Spectral Observation Theory and Beam Debroadening Algorithm for Atmospheric Radar |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A46%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20Observation%20Theory%20and%20Beam%20Debroadening%20Algorithm%20for%20Atmospheric%20Radar&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Nishimura,%20Koji&rft.date=2020-10-01&rft.volume=58&rft.issue=10&rft.spage=6767&rft.epage=6775&rft.pages=6767-6775&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2020.2970200&rft_dat=%3Cproquest_cross%3E2447336680%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2447336680&rft_id=info:pmid/&rft_ieee_id=9047136&rfr_iscdi=true |