Deep Feature Fusion via Two-Stream Convolutional Neural Network for Hyperspectral Image Classification

The representation power of convolutional neural network (CNN) models for hyperspectral image (HSI) analysis is in practice limited by the available amount of the labeled samples, which is often insufficient to sustain deep networks with many parameters. We propose a novel approach to boost the netw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2020-04, Vol.58 (4), p.2615-2629
Hauptverfasser: Li, Xian, Ding, Mingli, Pizurica, Aleksandra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2629
container_issue 4
container_start_page 2615
container_title IEEE transactions on geoscience and remote sensing
container_volume 58
creator Li, Xian
Ding, Mingli
Pizurica, Aleksandra
description The representation power of convolutional neural network (CNN) models for hyperspectral image (HSI) analysis is in practice limited by the available amount of the labeled samples, which is often insufficient to sustain deep networks with many parameters. We propose a novel approach to boost the network representation power with a two-stream 2-D CNN architecture. The proposed method extracts simultaneously, the spectral features and local spatial and global spatial features, with two 2-D CNN networks and makes use of channel correlations to identify the most informative features. Moreover, we propose a layer-specific regularization and a smooth normalization fusion scheme to adaptively learn the fusion weights for the spectral-spatial features from the two parallel streams. An important asset of our model is the simultaneous training of the feature extraction, fusion, and classification processes with the same cost function. Experimental results on several hyperspectral data sets demonstrate the efficacy of the proposed method compared with the state-of-the-art methods in the field.
doi_str_mv 10.1109/TGRS.2019.2952758
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2019_2952758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8920212</ieee_id><sourcerecordid>2383326617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-cb63ea178f6139884f84ff137f89f787f971fa2a16f747ded0f5d3ae3839a8c53</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2Zk7RNcinTfYAouHkdYncind1Sk3Zj_97WDeHAuXif93B4CLkFNgJg-mE5fV-MOAM94jrjMlNnZABZphKWp-k5GXRJnnCl-SW5inHNGKQZyAFxT4g1naBt2oB00sbSb-mutHS598miCWg3dOy3O1-1TRfZir5iG_5Ws_fhmzof6OxQY4g1Fk2fzDf2C-m4sjGWrixs37smF85WEW9Oe0g-Js_L8Sx5eZvOx48vScG1aJLiMxdoQSqXg9BKpa4bB0I6pZ1U0mkJznILuZOpXOGKuWwlLAoltFVFJobk_ni3Dv6nxdiYtW9D93Y0vIMEz3OQHQVHqgg-xoDO1KHc2HAwwEyv0_Q6Ta_TnHR2nbtjp0TEf74Tyjhw8Qu0_3I5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2383326617</pqid></control><display><type>article</type><title>Deep Feature Fusion via Two-Stream Convolutional Neural Network for Hyperspectral Image Classification</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Xian ; Ding, Mingli ; Pizurica, Aleksandra</creator><creatorcontrib>Li, Xian ; Ding, Mingli ; Pizurica, Aleksandra</creatorcontrib><description>The representation power of convolutional neural network (CNN) models for hyperspectral image (HSI) analysis is in practice limited by the available amount of the labeled samples, which is often insufficient to sustain deep networks with many parameters. We propose a novel approach to boost the network representation power with a two-stream 2-D CNN architecture. The proposed method extracts simultaneously, the spectral features and local spatial and global spatial features, with two 2-D CNN networks and makes use of channel correlations to identify the most informative features. Moreover, we propose a layer-specific regularization and a smooth normalization fusion scheme to adaptively learn the fusion weights for the spectral-spatial features from the two parallel streams. An important asset of our model is the simultaneous training of the feature extraction, fusion, and classification processes with the same cost function. Experimental results on several hyperspectral data sets demonstrate the efficacy of the proposed method compared with the state-of-the-art methods in the field.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2019.2952758</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Classification ; Convolutional neural networks ; Convolutional neural networks (CNNs) ; Cost function ; Feature extraction ; feature fusion ; hyperspectral image (HSI) classification ; Hyperspectral imaging ; Image classification ; Image processing ; Machine learning ; Neural networks ; Regularization ; Representations ; Rivers ; squeeze-and-excitation (SE) ; Streaming media ; Training</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2020-04, Vol.58 (4), p.2615-2629</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-cb63ea178f6139884f84ff137f89f787f971fa2a16f747ded0f5d3ae3839a8c53</citedby><cites>FETCH-LOGICAL-c293t-cb63ea178f6139884f84ff137f89f787f971fa2a16f747ded0f5d3ae3839a8c53</cites><orcidid>0000-0001-5714-3940</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8920212$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8920212$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Xian</creatorcontrib><creatorcontrib>Ding, Mingli</creatorcontrib><creatorcontrib>Pizurica, Aleksandra</creatorcontrib><title>Deep Feature Fusion via Two-Stream Convolutional Neural Network for Hyperspectral Image Classification</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>The representation power of convolutional neural network (CNN) models for hyperspectral image (HSI) analysis is in practice limited by the available amount of the labeled samples, which is often insufficient to sustain deep networks with many parameters. We propose a novel approach to boost the network representation power with a two-stream 2-D CNN architecture. The proposed method extracts simultaneously, the spectral features and local spatial and global spatial features, with two 2-D CNN networks and makes use of channel correlations to identify the most informative features. Moreover, we propose a layer-specific regularization and a smooth normalization fusion scheme to adaptively learn the fusion weights for the spectral-spatial features from the two parallel streams. An important asset of our model is the simultaneous training of the feature extraction, fusion, and classification processes with the same cost function. Experimental results on several hyperspectral data sets demonstrate the efficacy of the proposed method compared with the state-of-the-art methods in the field.</description><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Convolutional neural networks</subject><subject>Convolutional neural networks (CNNs)</subject><subject>Cost function</subject><subject>Feature extraction</subject><subject>feature fusion</subject><subject>hyperspectral image (HSI) classification</subject><subject>Hyperspectral imaging</subject><subject>Image classification</subject><subject>Image processing</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Regularization</subject><subject>Representations</subject><subject>Rivers</subject><subject>squeeze-and-excitation (SE)</subject><subject>Streaming media</subject><subject>Training</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2Zk7RNcinTfYAouHkdYncind1Sk3Zj_97WDeHAuXif93B4CLkFNgJg-mE5fV-MOAM94jrjMlNnZABZphKWp-k5GXRJnnCl-SW5inHNGKQZyAFxT4g1naBt2oB00sbSb-mutHS598miCWg3dOy3O1-1TRfZir5iG_5Ws_fhmzof6OxQY4g1Fk2fzDf2C-m4sjGWrixs37smF85WEW9Oe0g-Js_L8Sx5eZvOx48vScG1aJLiMxdoQSqXg9BKpa4bB0I6pZ1U0mkJznILuZOpXOGKuWwlLAoltFVFJobk_ni3Dv6nxdiYtW9D93Y0vIMEz3OQHQVHqgg-xoDO1KHc2HAwwEyv0_Q6Ta_TnHR2nbtjp0TEf74Tyjhw8Qu0_3I5</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Li, Xian</creator><creator>Ding, Mingli</creator><creator>Pizurica, Aleksandra</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5714-3940</orcidid></search><sort><creationdate>20200401</creationdate><title>Deep Feature Fusion via Two-Stream Convolutional Neural Network for Hyperspectral Image Classification</title><author>Li, Xian ; Ding, Mingli ; Pizurica, Aleksandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-cb63ea178f6139884f84ff137f89f787f971fa2a16f747ded0f5d3ae3839a8c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Convolutional neural networks</topic><topic>Convolutional neural networks (CNNs)</topic><topic>Cost function</topic><topic>Feature extraction</topic><topic>feature fusion</topic><topic>hyperspectral image (HSI) classification</topic><topic>Hyperspectral imaging</topic><topic>Image classification</topic><topic>Image processing</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Regularization</topic><topic>Representations</topic><topic>Rivers</topic><topic>squeeze-and-excitation (SE)</topic><topic>Streaming media</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xian</creatorcontrib><creatorcontrib>Ding, Mingli</creatorcontrib><creatorcontrib>Pizurica, Aleksandra</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Xian</au><au>Ding, Mingli</au><au>Pizurica, Aleksandra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Feature Fusion via Two-Stream Convolutional Neural Network for Hyperspectral Image Classification</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>58</volume><issue>4</issue><spage>2615</spage><epage>2629</epage><pages>2615-2629</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>The representation power of convolutional neural network (CNN) models for hyperspectral image (HSI) analysis is in practice limited by the available amount of the labeled samples, which is often insufficient to sustain deep networks with many parameters. We propose a novel approach to boost the network representation power with a two-stream 2-D CNN architecture. The proposed method extracts simultaneously, the spectral features and local spatial and global spatial features, with two 2-D CNN networks and makes use of channel correlations to identify the most informative features. Moreover, we propose a layer-specific regularization and a smooth normalization fusion scheme to adaptively learn the fusion weights for the spectral-spatial features from the two parallel streams. An important asset of our model is the simultaneous training of the feature extraction, fusion, and classification processes with the same cost function. Experimental results on several hyperspectral data sets demonstrate the efficacy of the proposed method compared with the state-of-the-art methods in the field.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2019.2952758</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5714-3940</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2020-04, Vol.58 (4), p.2615-2629
issn 0196-2892
1558-0644
language eng
recordid cdi_crossref_primary_10_1109_TGRS_2019_2952758
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Classification
Convolutional neural networks
Convolutional neural networks (CNNs)
Cost function
Feature extraction
feature fusion
hyperspectral image (HSI) classification
Hyperspectral imaging
Image classification
Image processing
Machine learning
Neural networks
Regularization
Representations
Rivers
squeeze-and-excitation (SE)
Streaming media
Training
title Deep Feature Fusion via Two-Stream Convolutional Neural Network for Hyperspectral Image Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T12%3A01%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Feature%20Fusion%20via%20Two-Stream%20Convolutional%20Neural%20Network%20for%20Hyperspectral%20Image%20Classification&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Li,%20Xian&rft.date=2020-04-01&rft.volume=58&rft.issue=4&rft.spage=2615&rft.epage=2629&rft.pages=2615-2629&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2019.2952758&rft_dat=%3Cproquest_RIE%3E2383326617%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2383326617&rft_id=info:pmid/&rft_ieee_id=8920212&rfr_iscdi=true