Deep Feature Fusion via Two-Stream Convolutional Neural Network for Hyperspectral Image Classification
The representation power of convolutional neural network (CNN) models for hyperspectral image (HSI) analysis is in practice limited by the available amount of the labeled samples, which is often insufficient to sustain deep networks with many parameters. We propose a novel approach to boost the netw...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2020-04, Vol.58 (4), p.2615-2629 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2629 |
---|---|
container_issue | 4 |
container_start_page | 2615 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 58 |
creator | Li, Xian Ding, Mingli Pizurica, Aleksandra |
description | The representation power of convolutional neural network (CNN) models for hyperspectral image (HSI) analysis is in practice limited by the available amount of the labeled samples, which is often insufficient to sustain deep networks with many parameters. We propose a novel approach to boost the network representation power with a two-stream 2-D CNN architecture. The proposed method extracts simultaneously, the spectral features and local spatial and global spatial features, with two 2-D CNN networks and makes use of channel correlations to identify the most informative features. Moreover, we propose a layer-specific regularization and a smooth normalization fusion scheme to adaptively learn the fusion weights for the spectral-spatial features from the two parallel streams. An important asset of our model is the simultaneous training of the feature extraction, fusion, and classification processes with the same cost function. Experimental results on several hyperspectral data sets demonstrate the efficacy of the proposed method compared with the state-of-the-art methods in the field. |
doi_str_mv | 10.1109/TGRS.2019.2952758 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2019_2952758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8920212</ieee_id><sourcerecordid>2383326617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-cb63ea178f6139884f84ff137f89f787f971fa2a16f747ded0f5d3ae3839a8c53</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2Zk7RNcinTfYAouHkdYncind1Sk3Zj_97WDeHAuXif93B4CLkFNgJg-mE5fV-MOAM94jrjMlNnZABZphKWp-k5GXRJnnCl-SW5inHNGKQZyAFxT4g1naBt2oB00sbSb-mutHS598miCWg3dOy3O1-1TRfZir5iG_5Ws_fhmzof6OxQY4g1Fk2fzDf2C-m4sjGWrixs37smF85WEW9Oe0g-Js_L8Sx5eZvOx48vScG1aJLiMxdoQSqXg9BKpa4bB0I6pZ1U0mkJznILuZOpXOGKuWwlLAoltFVFJobk_ni3Dv6nxdiYtW9D93Y0vIMEz3OQHQVHqgg-xoDO1KHc2HAwwEyv0_Q6Ta_TnHR2nbtjp0TEf74Tyjhw8Qu0_3I5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2383326617</pqid></control><display><type>article</type><title>Deep Feature Fusion via Two-Stream Convolutional Neural Network for Hyperspectral Image Classification</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Xian ; Ding, Mingli ; Pizurica, Aleksandra</creator><creatorcontrib>Li, Xian ; Ding, Mingli ; Pizurica, Aleksandra</creatorcontrib><description>The representation power of convolutional neural network (CNN) models for hyperspectral image (HSI) analysis is in practice limited by the available amount of the labeled samples, which is often insufficient to sustain deep networks with many parameters. We propose a novel approach to boost the network representation power with a two-stream 2-D CNN architecture. The proposed method extracts simultaneously, the spectral features and local spatial and global spatial features, with two 2-D CNN networks and makes use of channel correlations to identify the most informative features. Moreover, we propose a layer-specific regularization and a smooth normalization fusion scheme to adaptively learn the fusion weights for the spectral-spatial features from the two parallel streams. An important asset of our model is the simultaneous training of the feature extraction, fusion, and classification processes with the same cost function. Experimental results on several hyperspectral data sets demonstrate the efficacy of the proposed method compared with the state-of-the-art methods in the field.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2019.2952758</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Classification ; Convolutional neural networks ; Convolutional neural networks (CNNs) ; Cost function ; Feature extraction ; feature fusion ; hyperspectral image (HSI) classification ; Hyperspectral imaging ; Image classification ; Image processing ; Machine learning ; Neural networks ; Regularization ; Representations ; Rivers ; squeeze-and-excitation (SE) ; Streaming media ; Training</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2020-04, Vol.58 (4), p.2615-2629</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-cb63ea178f6139884f84ff137f89f787f971fa2a16f747ded0f5d3ae3839a8c53</citedby><cites>FETCH-LOGICAL-c293t-cb63ea178f6139884f84ff137f89f787f971fa2a16f747ded0f5d3ae3839a8c53</cites><orcidid>0000-0001-5714-3940</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8920212$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8920212$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Xian</creatorcontrib><creatorcontrib>Ding, Mingli</creatorcontrib><creatorcontrib>Pizurica, Aleksandra</creatorcontrib><title>Deep Feature Fusion via Two-Stream Convolutional Neural Network for Hyperspectral Image Classification</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>The representation power of convolutional neural network (CNN) models for hyperspectral image (HSI) analysis is in practice limited by the available amount of the labeled samples, which is often insufficient to sustain deep networks with many parameters. We propose a novel approach to boost the network representation power with a two-stream 2-D CNN architecture. The proposed method extracts simultaneously, the spectral features and local spatial and global spatial features, with two 2-D CNN networks and makes use of channel correlations to identify the most informative features. Moreover, we propose a layer-specific regularization and a smooth normalization fusion scheme to adaptively learn the fusion weights for the spectral-spatial features from the two parallel streams. An important asset of our model is the simultaneous training of the feature extraction, fusion, and classification processes with the same cost function. Experimental results on several hyperspectral data sets demonstrate the efficacy of the proposed method compared with the state-of-the-art methods in the field.</description><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Convolutional neural networks</subject><subject>Convolutional neural networks (CNNs)</subject><subject>Cost function</subject><subject>Feature extraction</subject><subject>feature fusion</subject><subject>hyperspectral image (HSI) classification</subject><subject>Hyperspectral imaging</subject><subject>Image classification</subject><subject>Image processing</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Regularization</subject><subject>Representations</subject><subject>Rivers</subject><subject>squeeze-and-excitation (SE)</subject><subject>Streaming media</subject><subject>Training</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2Zk7RNcinTfYAouHkdYncind1Sk3Zj_97WDeHAuXif93B4CLkFNgJg-mE5fV-MOAM94jrjMlNnZABZphKWp-k5GXRJnnCl-SW5inHNGKQZyAFxT4g1naBt2oB00sbSb-mutHS598miCWg3dOy3O1-1TRfZir5iG_5Ws_fhmzof6OxQY4g1Fk2fzDf2C-m4sjGWrixs37smF85WEW9Oe0g-Js_L8Sx5eZvOx48vScG1aJLiMxdoQSqXg9BKpa4bB0I6pZ1U0mkJznILuZOpXOGKuWwlLAoltFVFJobk_ni3Dv6nxdiYtW9D93Y0vIMEz3OQHQVHqgg-xoDO1KHc2HAwwEyv0_Q6Ta_TnHR2nbtjp0TEf74Tyjhw8Qu0_3I5</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Li, Xian</creator><creator>Ding, Mingli</creator><creator>Pizurica, Aleksandra</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5714-3940</orcidid></search><sort><creationdate>20200401</creationdate><title>Deep Feature Fusion via Two-Stream Convolutional Neural Network for Hyperspectral Image Classification</title><author>Li, Xian ; Ding, Mingli ; Pizurica, Aleksandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-cb63ea178f6139884f84ff137f89f787f971fa2a16f747ded0f5d3ae3839a8c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Convolutional neural networks</topic><topic>Convolutional neural networks (CNNs)</topic><topic>Cost function</topic><topic>Feature extraction</topic><topic>feature fusion</topic><topic>hyperspectral image (HSI) classification</topic><topic>Hyperspectral imaging</topic><topic>Image classification</topic><topic>Image processing</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Regularization</topic><topic>Representations</topic><topic>Rivers</topic><topic>squeeze-and-excitation (SE)</topic><topic>Streaming media</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xian</creatorcontrib><creatorcontrib>Ding, Mingli</creatorcontrib><creatorcontrib>Pizurica, Aleksandra</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Xian</au><au>Ding, Mingli</au><au>Pizurica, Aleksandra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Feature Fusion via Two-Stream Convolutional Neural Network for Hyperspectral Image Classification</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>58</volume><issue>4</issue><spage>2615</spage><epage>2629</epage><pages>2615-2629</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>The representation power of convolutional neural network (CNN) models for hyperspectral image (HSI) analysis is in practice limited by the available amount of the labeled samples, which is often insufficient to sustain deep networks with many parameters. We propose a novel approach to boost the network representation power with a two-stream 2-D CNN architecture. The proposed method extracts simultaneously, the spectral features and local spatial and global spatial features, with two 2-D CNN networks and makes use of channel correlations to identify the most informative features. Moreover, we propose a layer-specific regularization and a smooth normalization fusion scheme to adaptively learn the fusion weights for the spectral-spatial features from the two parallel streams. An important asset of our model is the simultaneous training of the feature extraction, fusion, and classification processes with the same cost function. Experimental results on several hyperspectral data sets demonstrate the efficacy of the proposed method compared with the state-of-the-art methods in the field.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2019.2952758</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5714-3940</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2020-04, Vol.58 (4), p.2615-2629 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TGRS_2019_2952758 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Classification Convolutional neural networks Convolutional neural networks (CNNs) Cost function Feature extraction feature fusion hyperspectral image (HSI) classification Hyperspectral imaging Image classification Image processing Machine learning Neural networks Regularization Representations Rivers squeeze-and-excitation (SE) Streaming media Training |
title | Deep Feature Fusion via Two-Stream Convolutional Neural Network for Hyperspectral Image Classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T12%3A01%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Feature%20Fusion%20via%20Two-Stream%20Convolutional%20Neural%20Network%20for%20Hyperspectral%20Image%20Classification&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Li,%20Xian&rft.date=2020-04-01&rft.volume=58&rft.issue=4&rft.spage=2615&rft.epage=2629&rft.pages=2615-2629&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2019.2952758&rft_dat=%3Cproquest_RIE%3E2383326617%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2383326617&rft_id=info:pmid/&rft_ieee_id=8920212&rfr_iscdi=true |