Deep Feature Fusion via Two-Stream Convolutional Neural Network for Hyperspectral Image Classification

The representation power of convolutional neural network (CNN) models for hyperspectral image (HSI) analysis is in practice limited by the available amount of the labeled samples, which is often insufficient to sustain deep networks with many parameters. We propose a novel approach to boost the netw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2020-04, Vol.58 (4), p.2615-2629
Hauptverfasser: Li, Xian, Ding, Mingli, Pizurica, Aleksandra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The representation power of convolutional neural network (CNN) models for hyperspectral image (HSI) analysis is in practice limited by the available amount of the labeled samples, which is often insufficient to sustain deep networks with many parameters. We propose a novel approach to boost the network representation power with a two-stream 2-D CNN architecture. The proposed method extracts simultaneously, the spectral features and local spatial and global spatial features, with two 2-D CNN networks and makes use of channel correlations to identify the most informative features. Moreover, we propose a layer-specific regularization and a smooth normalization fusion scheme to adaptively learn the fusion weights for the spectral-spatial features from the two parallel streams. An important asset of our model is the simultaneous training of the feature extraction, fusion, and classification processes with the same cost function. Experimental results on several hyperspectral data sets demonstrate the efficacy of the proposed method compared with the state-of-the-art methods in the field.
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2019.2952758