Efficient Narrowband RFI Mitigation Algorithms for SAR Systems With Reweighted Tensor Structures

Radio-frequency systems, such as TV and cellular networks, severely interfere with synthetic aperture radar (SAR) systems. Narrowband radio-frequency interference (RFI) has a special low-rank property in the received signal matrix, because it performs like a sinusoid with nearly invariant frequency...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2019-11, Vol.57 (11), p.9396-9409
Hauptverfasser: Huang, Yan, Liao, Guisheng, Zhang, Lei, Xiang, Yijian, Li, Jie, Nehorai, Arye
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9409
container_issue 11
container_start_page 9396
container_title IEEE transactions on geoscience and remote sensing
container_volume 57
creator Huang, Yan
Liao, Guisheng
Zhang, Lei
Xiang, Yijian
Li, Jie
Nehorai, Arye
description Radio-frequency systems, such as TV and cellular networks, severely interfere with synthetic aperture radar (SAR) systems. Narrowband radio-frequency interference (RFI) has a special low-rank property in the received signal matrix, because it performs like a sinusoid with nearly invariant frequency as the slow time proceeds. Exploiting this special property, in this paper, we divide the received signal matrix into several small matrices, in each of which the RFI is also low rank. Without losing the connection between these small matrices, we stack them into a three-mode tensor to separate the low-rank RFI tensor and recover the informative signal tensor. Previous studies employed the nuclear norm to regularize the low-rank RFI, which is not a good choice. Hence, we propose two reweighted algorithms, the reweighted tensor nuclear norm (RTNN) and the reweighted tensor Frobenius norm (RTFN) algorithms, to approximate the rank function in a tensor and accurately extract the low-rank RFI tensor from the received signal tensor. As a result, the introduction of the tensor structure dramatically decreases the computational cost. Furthermore, the reweighted scheme helps suppressing the RFI and recovering the useful signal with excellent performance. Finally, real SAR data with measured RFI is employed to demonstrate the effectiveness of the proposed methods for RFI mitigation.
doi_str_mv 10.1109/TGRS.2019.2926440
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2019_2926440</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8809356</ieee_id><sourcerecordid>2311106163</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-d1c9c4c78d1e288199a681c121cab54c62117d714888f54180dd1f03cf92d0683</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhhujiYj-AOOliefFTne3tEdCAElQkwXjcV36ASWwi203hH9vNxhPk3fmmZnkQegRyACAiJfVrFgOKAExoIKyLCNXqAd5zhMSwzXqxQlLKBf0Ft15vyMEshyGPfQ9McZKq-uA3yvnmtO6qhUupnP8ZoPdVME2NR7tN42zYXvw2DQOL0cFXp590DF_xTYu9EnbzTZohVe69h0SXCtD67S_Rzem2nv98Ff76HM6WY1fk8XHbD4eLRJJRRoSBVLITA65Ak05ByEqxkECBVmt80wyCjBUQ8g45ybPgBOlwJBUGkEVYTzto-fL3aNrflrtQ7lrWlfHlyVNITpiwNJIwYWSrvHeaVMenT1U7lwCKTuRZSey7ESWfyLjztNlx2qt_3nOiUhzlv4CnDtulA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2311106163</pqid></control><display><type>article</type><title>Efficient Narrowband RFI Mitigation Algorithms for SAR Systems With Reweighted Tensor Structures</title><source>IEEE Electronic Library (IEL)</source><creator>Huang, Yan ; Liao, Guisheng ; Zhang, Lei ; Xiang, Yijian ; Li, Jie ; Nehorai, Arye</creator><creatorcontrib>Huang, Yan ; Liao, Guisheng ; Zhang, Lei ; Xiang, Yijian ; Li, Jie ; Nehorai, Arye</creatorcontrib><description>Radio-frequency systems, such as TV and cellular networks, severely interfere with synthetic aperture radar (SAR) systems. Narrowband radio-frequency interference (RFI) has a special low-rank property in the received signal matrix, because it performs like a sinusoid with nearly invariant frequency as the slow time proceeds. Exploiting this special property, in this paper, we divide the received signal matrix into several small matrices, in each of which the RFI is also low rank. Without losing the connection between these small matrices, we stack them into a three-mode tensor to separate the low-rank RFI tensor and recover the informative signal tensor. Previous studies employed the nuclear norm to regularize the low-rank RFI, which is not a good choice. Hence, we propose two reweighted algorithms, the reweighted tensor nuclear norm (RTNN) and the reweighted tensor Frobenius norm (RTFN) algorithms, to approximate the rank function in a tensor and accurately extract the low-rank RFI tensor from the received signal tensor. As a result, the introduction of the tensor structure dramatically decreases the computational cost. Furthermore, the reweighted scheme helps suppressing the RFI and recovering the useful signal with excellent performance. Finally, real SAR data with measured RFI is employed to demonstrate the effectiveness of the proposed methods for RFI mitigation.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2019.2926440</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Azimuth ; Cellular communication ; Cellular structure ; Computer applications ; Mathematical analysis ; Mitigation ; Narrowband ; Radio ; Radio frequency interference ; Radio-frequency interference (RFI) mitigation ; Radiofrequency interference ; reweighted tensor Frobenius norm (RTFN) ; reweighted tensor nuclear norm (RTNN) ; SAR (radar) ; Sparse matrices ; Synthetic aperture radar ; synthetic aperture radar (SAR) ; Tensors ; Time-frequency analysis</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2019-11, Vol.57 (11), p.9396-9409</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-d1c9c4c78d1e288199a681c121cab54c62117d714888f54180dd1f03cf92d0683</citedby><cites>FETCH-LOGICAL-c293t-d1c9c4c78d1e288199a681c121cab54c62117d714888f54180dd1f03cf92d0683</cites><orcidid>0000-0002-3691-6470 ; 0000-0001-9069-1084 ; 0000-0001-5797-5480 ; 0000-0002-9055-9865</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8809356$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8809356$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Huang, Yan</creatorcontrib><creatorcontrib>Liao, Guisheng</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Xiang, Yijian</creatorcontrib><creatorcontrib>Li, Jie</creatorcontrib><creatorcontrib>Nehorai, Arye</creatorcontrib><title>Efficient Narrowband RFI Mitigation Algorithms for SAR Systems With Reweighted Tensor Structures</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Radio-frequency systems, such as TV and cellular networks, severely interfere with synthetic aperture radar (SAR) systems. Narrowband radio-frequency interference (RFI) has a special low-rank property in the received signal matrix, because it performs like a sinusoid with nearly invariant frequency as the slow time proceeds. Exploiting this special property, in this paper, we divide the received signal matrix into several small matrices, in each of which the RFI is also low rank. Without losing the connection between these small matrices, we stack them into a three-mode tensor to separate the low-rank RFI tensor and recover the informative signal tensor. Previous studies employed the nuclear norm to regularize the low-rank RFI, which is not a good choice. Hence, we propose two reweighted algorithms, the reweighted tensor nuclear norm (RTNN) and the reweighted tensor Frobenius norm (RTFN) algorithms, to approximate the rank function in a tensor and accurately extract the low-rank RFI tensor from the received signal tensor. As a result, the introduction of the tensor structure dramatically decreases the computational cost. Furthermore, the reweighted scheme helps suppressing the RFI and recovering the useful signal with excellent performance. Finally, real SAR data with measured RFI is employed to demonstrate the effectiveness of the proposed methods for RFI mitigation.</description><subject>Algorithms</subject><subject>Azimuth</subject><subject>Cellular communication</subject><subject>Cellular structure</subject><subject>Computer applications</subject><subject>Mathematical analysis</subject><subject>Mitigation</subject><subject>Narrowband</subject><subject>Radio</subject><subject>Radio frequency interference</subject><subject>Radio-frequency interference (RFI) mitigation</subject><subject>Radiofrequency interference</subject><subject>reweighted tensor Frobenius norm (RTFN)</subject><subject>reweighted tensor nuclear norm (RTNN)</subject><subject>SAR (radar)</subject><subject>Sparse matrices</subject><subject>Synthetic aperture radar</subject><subject>synthetic aperture radar (SAR)</subject><subject>Tensors</subject><subject>Time-frequency analysis</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PAjEQhhujiYj-AOOliefFTne3tEdCAElQkwXjcV36ASWwi203hH9vNxhPk3fmmZnkQegRyACAiJfVrFgOKAExoIKyLCNXqAd5zhMSwzXqxQlLKBf0Ft15vyMEshyGPfQ9McZKq-uA3yvnmtO6qhUupnP8ZoPdVME2NR7tN42zYXvw2DQOL0cFXp590DF_xTYu9EnbzTZohVe69h0SXCtD67S_Rzem2nv98Ff76HM6WY1fk8XHbD4eLRJJRRoSBVLITA65Ak05ByEqxkECBVmt80wyCjBUQ8g45ybPgBOlwJBUGkEVYTzto-fL3aNrflrtQ7lrWlfHlyVNITpiwNJIwYWSrvHeaVMenT1U7lwCKTuRZSey7ESWfyLjztNlx2qt_3nOiUhzlv4CnDtulA</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Huang, Yan</creator><creator>Liao, Guisheng</creator><creator>Zhang, Lei</creator><creator>Xiang, Yijian</creator><creator>Li, Jie</creator><creator>Nehorai, Arye</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3691-6470</orcidid><orcidid>https://orcid.org/0000-0001-9069-1084</orcidid><orcidid>https://orcid.org/0000-0001-5797-5480</orcidid><orcidid>https://orcid.org/0000-0002-9055-9865</orcidid></search><sort><creationdate>20191101</creationdate><title>Efficient Narrowband RFI Mitigation Algorithms for SAR Systems With Reweighted Tensor Structures</title><author>Huang, Yan ; Liao, Guisheng ; Zhang, Lei ; Xiang, Yijian ; Li, Jie ; Nehorai, Arye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-d1c9c4c78d1e288199a681c121cab54c62117d714888f54180dd1f03cf92d0683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Azimuth</topic><topic>Cellular communication</topic><topic>Cellular structure</topic><topic>Computer applications</topic><topic>Mathematical analysis</topic><topic>Mitigation</topic><topic>Narrowband</topic><topic>Radio</topic><topic>Radio frequency interference</topic><topic>Radio-frequency interference (RFI) mitigation</topic><topic>Radiofrequency interference</topic><topic>reweighted tensor Frobenius norm (RTFN)</topic><topic>reweighted tensor nuclear norm (RTNN)</topic><topic>SAR (radar)</topic><topic>Sparse matrices</topic><topic>Synthetic aperture radar</topic><topic>synthetic aperture radar (SAR)</topic><topic>Tensors</topic><topic>Time-frequency analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Yan</creatorcontrib><creatorcontrib>Liao, Guisheng</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Xiang, Yijian</creatorcontrib><creatorcontrib>Li, Jie</creatorcontrib><creatorcontrib>Nehorai, Arye</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huang, Yan</au><au>Liao, Guisheng</au><au>Zhang, Lei</au><au>Xiang, Yijian</au><au>Li, Jie</au><au>Nehorai, Arye</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Narrowband RFI Mitigation Algorithms for SAR Systems With Reweighted Tensor Structures</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>57</volume><issue>11</issue><spage>9396</spage><epage>9409</epage><pages>9396-9409</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Radio-frequency systems, such as TV and cellular networks, severely interfere with synthetic aperture radar (SAR) systems. Narrowband radio-frequency interference (RFI) has a special low-rank property in the received signal matrix, because it performs like a sinusoid with nearly invariant frequency as the slow time proceeds. Exploiting this special property, in this paper, we divide the received signal matrix into several small matrices, in each of which the RFI is also low rank. Without losing the connection between these small matrices, we stack them into a three-mode tensor to separate the low-rank RFI tensor and recover the informative signal tensor. Previous studies employed the nuclear norm to regularize the low-rank RFI, which is not a good choice. Hence, we propose two reweighted algorithms, the reweighted tensor nuclear norm (RTNN) and the reweighted tensor Frobenius norm (RTFN) algorithms, to approximate the rank function in a tensor and accurately extract the low-rank RFI tensor from the received signal tensor. As a result, the introduction of the tensor structure dramatically decreases the computational cost. Furthermore, the reweighted scheme helps suppressing the RFI and recovering the useful signal with excellent performance. Finally, real SAR data with measured RFI is employed to demonstrate the effectiveness of the proposed methods for RFI mitigation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2019.2926440</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3691-6470</orcidid><orcidid>https://orcid.org/0000-0001-9069-1084</orcidid><orcidid>https://orcid.org/0000-0001-5797-5480</orcidid><orcidid>https://orcid.org/0000-0002-9055-9865</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2019-11, Vol.57 (11), p.9396-9409
issn 0196-2892
1558-0644
language eng
recordid cdi_crossref_primary_10_1109_TGRS_2019_2926440
source IEEE Electronic Library (IEL)
subjects Algorithms
Azimuth
Cellular communication
Cellular structure
Computer applications
Mathematical analysis
Mitigation
Narrowband
Radio
Radio frequency interference
Radio-frequency interference (RFI) mitigation
Radiofrequency interference
reweighted tensor Frobenius norm (RTFN)
reweighted tensor nuclear norm (RTNN)
SAR (radar)
Sparse matrices
Synthetic aperture radar
synthetic aperture radar (SAR)
Tensors
Time-frequency analysis
title Efficient Narrowband RFI Mitigation Algorithms for SAR Systems With Reweighted Tensor Structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T23%3A57%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Narrowband%20RFI%20Mitigation%20Algorithms%20for%20SAR%20Systems%20With%20Reweighted%20Tensor%20Structures&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Huang,%20Yan&rft.date=2019-11-01&rft.volume=57&rft.issue=11&rft.spage=9396&rft.epage=9409&rft.pages=9396-9409&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2019.2926440&rft_dat=%3Cproquest_RIE%3E2311106163%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2311106163&rft_id=info:pmid/&rft_ieee_id=8809356&rfr_iscdi=true