Petrophysical Parameter Calculation Based on NMR Echo Data in Tight Sandstone

Bound water saturation ( S_{\mathrm {wb}} ) and permeability are the important petrophysical parameters. However, the traditional methods for the calculation of S_{\mathrm {wb}} and permeability based on the nuclear magnetic resonance (NMR) transverse relaxation time ( T_{2} ) distributions are no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2019-08, Vol.57 (8), p.5618-5625
Hauptverfasser: Jin, Guowen, Xie, Ranhong, Liu, Mi, Guo, Jiangfeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5625
container_issue 8
container_start_page 5618
container_title IEEE transactions on geoscience and remote sensing
container_volume 57
creator Jin, Guowen
Xie, Ranhong
Liu, Mi
Guo, Jiangfeng
description Bound water saturation ( S_{\mathrm {wb}} ) and permeability are the important petrophysical parameters. However, the traditional methods for the calculation of S_{\mathrm {wb}} and permeability based on the nuclear magnetic resonance (NMR) transverse relaxation time ( T_{2} ) distributions are not applicable for tight sandstone because the NMR data have a low signal-to-noise ratio and the calculation models have certain disadvantages. In this paper, we present a new method for the calculation of S_{\mathrm {wb}} and permeability using integral transforms (ITs) of the NMR echo data in tight sandstone. First, the tapered cutoff function was established using the Laplace transform function of the exponential hyperbolic sine function based on the film model; S_{\mathrm {wb}} was directly calculated from the echo data using the exponential hyperbolic sine transform without an inversion of the T_{2} distribution. The position and slope of the median point, both of which control the shape of the tapered cutoff function, were determined by core experiments. Subsequently, the tapered cutoff function representing the proportion coefficients of the free fluids in the pore space was added to the arithmetic mean of the T_{2} ( T_{\mathrm {2am}} ) as a weight to construct the weighted T_{\mathrm {2am}} ( T_{\mathrm {2wam}} ). T_{\mathrm {2wam}} was highly suitable for reflecting the seepage ability of the pores and was directly calculated from the NMR echo data using an IT without an inversion. A new permeability calculation model was developed based on T_{\mathrm {2wam}} . The numerical simulation and core experimenta
doi_str_mv 10.1109/TGRS.2019.2901119
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2019_2901119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8671496</ieee_id><sourcerecordid>2261264411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-f531dfdefac216eefb26087dcfb332b9129a4b70bae53f3a1776fc144457f1f03</originalsourceid><addsrcrecordid>eNo9kFFPwjAQxxujiYh-AONLE5-Hvbbr1kdFRBNQAvjcdF0rI2PDtnvg2zsC8ekuud__LvdD6B7ICIDIp_V0uRpRAnJEJQEAeYEGkKZ5QgTnl2jQT0RCc0mv0U0IW0KAp5AN0Hxho2_3m0OojK7xQnu9s9F6PNa16Wodq7bBLzrYEvfN53yJJ2bT4lcdNa4avK5-NhGvdFOG2Db2Fl05XQd7d65D9P02WY_fk9nX9GP8PEsMlSwmLmVQutI6bSgIa11BBcmz0riCMVpIoFLzIiOFtilzTEOWCWeAc55mDhxhQ_R42rv37W9nQ1TbtvNNf1JRKoD2PwP0FJwo49sQvHVq76ud9gcFRB2tqaM1dbSmztb6zMMpU1lr__lcZMClYH90-Wg5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2261264411</pqid></control><display><type>article</type><title>Petrophysical Parameter Calculation Based on NMR Echo Data in Tight Sandstone</title><source>IEEE Electronic Library (IEL)</source><creator>Jin, Guowen ; Xie, Ranhong ; Liu, Mi ; Guo, Jiangfeng</creator><creatorcontrib>Jin, Guowen ; Xie, Ranhong ; Liu, Mi ; Guo, Jiangfeng</creatorcontrib><description><![CDATA[Bound water saturation (<inline-formula> <tex-math notation="LaTeX">S_{\mathrm {wb}} </tex-math></inline-formula>) and permeability are the important petrophysical parameters. However, the traditional methods for the calculation of <inline-formula> <tex-math notation="LaTeX">S_{\mathrm {wb}} </tex-math></inline-formula> and permeability based on the nuclear magnetic resonance (NMR) transverse relaxation time (<inline-formula> <tex-math notation="LaTeX">T_{2} </tex-math></inline-formula>) distributions are not applicable for tight sandstone because the NMR data have a low signal-to-noise ratio and the calculation models have certain disadvantages. In this paper, we present a new method for the calculation of <inline-formula> <tex-math notation="LaTeX">S_{\mathrm {wb}} </tex-math></inline-formula> and permeability using integral transforms (ITs) of the NMR echo data in tight sandstone. First, the tapered cutoff function was established using the Laplace transform function of the exponential hyperbolic sine function based on the film model; <inline-formula> <tex-math notation="LaTeX">S_{\mathrm {wb}} </tex-math></inline-formula> was directly calculated from the echo data using the exponential hyperbolic sine transform without an inversion of the <inline-formula> <tex-math notation="LaTeX">T_{2} </tex-math></inline-formula> distribution. The position and slope of the median point, both of which control the shape of the tapered cutoff function, were determined by core experiments. Subsequently, the tapered cutoff function representing the proportion coefficients of the free fluids in the pore space was added to the arithmetic mean of the <inline-formula> <tex-math notation="LaTeX">T_{2} </tex-math></inline-formula> (<inline-formula> <tex-math notation="LaTeX">T_{\mathrm {2am}} </tex-math></inline-formula>) as a weight to construct the weighted <inline-formula> <tex-math notation="LaTeX">T_{\mathrm {2am}} </tex-math></inline-formula> (<inline-formula> <tex-math notation="LaTeX">T_{\mathrm {2wam}} </tex-math></inline-formula>). <inline-formula> <tex-math notation="LaTeX">T_{\mathrm {2wam}} </tex-math></inline-formula> was highly suitable for reflecting the seepage ability of the pores and was directly calculated from the NMR echo data using an IT without an inversion. A new permeability calculation model was developed based on <inline-formula> <tex-math notation="LaTeX">T_{\mathrm {2wam}} </tex-math></inline-formula>. The numerical simulation and core experimental results verified the effectiveness of the new method.]]></description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2019.2901119</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bound water ; Bound water saturation ; Coefficients ; Computational fluid dynamics ; Computer simulation ; Data ; Data models ; Echoes ; Fluids ; Hyperbolic functions ; integral transform (IT) ; Integral transforms ; Inversion ; Magnetic induction ; Magnetic permeability ; Mathematical models ; NMR ; Nuclear magnetic resonance ; nuclear magnetic resonance (NMR) ; Numerical models ; Parameters ; Permeability ; Relaxation time ; Reservoirs ; Sandstone ; Saturation ; Sedimentary rocks ; Seepage ; Signal to noise ratio ; tight sandstone ; Transforms ; Trigonometric functions</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2019-08, Vol.57 (8), p.5618-5625</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-f531dfdefac216eefb26087dcfb332b9129a4b70bae53f3a1776fc144457f1f03</citedby><cites>FETCH-LOGICAL-c293t-f531dfdefac216eefb26087dcfb332b9129a4b70bae53f3a1776fc144457f1f03</cites><orcidid>0000-0002-8420-0143 ; 0000-0002-5237-4544</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8671496$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8671496$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jin, Guowen</creatorcontrib><creatorcontrib>Xie, Ranhong</creatorcontrib><creatorcontrib>Liu, Mi</creatorcontrib><creatorcontrib>Guo, Jiangfeng</creatorcontrib><title>Petrophysical Parameter Calculation Based on NMR Echo Data in Tight Sandstone</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description><![CDATA[Bound water saturation (<inline-formula> <tex-math notation="LaTeX">S_{\mathrm {wb}} </tex-math></inline-formula>) and permeability are the important petrophysical parameters. However, the traditional methods for the calculation of <inline-formula> <tex-math notation="LaTeX">S_{\mathrm {wb}} </tex-math></inline-formula> and permeability based on the nuclear magnetic resonance (NMR) transverse relaxation time (<inline-formula> <tex-math notation="LaTeX">T_{2} </tex-math></inline-formula>) distributions are not applicable for tight sandstone because the NMR data have a low signal-to-noise ratio and the calculation models have certain disadvantages. In this paper, we present a new method for the calculation of <inline-formula> <tex-math notation="LaTeX">S_{\mathrm {wb}} </tex-math></inline-formula> and permeability using integral transforms (ITs) of the NMR echo data in tight sandstone. First, the tapered cutoff function was established using the Laplace transform function of the exponential hyperbolic sine function based on the film model; <inline-formula> <tex-math notation="LaTeX">S_{\mathrm {wb}} </tex-math></inline-formula> was directly calculated from the echo data using the exponential hyperbolic sine transform without an inversion of the <inline-formula> <tex-math notation="LaTeX">T_{2} </tex-math></inline-formula> distribution. The position and slope of the median point, both of which control the shape of the tapered cutoff function, were determined by core experiments. Subsequently, the tapered cutoff function representing the proportion coefficients of the free fluids in the pore space was added to the arithmetic mean of the <inline-formula> <tex-math notation="LaTeX">T_{2} </tex-math></inline-formula> (<inline-formula> <tex-math notation="LaTeX">T_{\mathrm {2am}} </tex-math></inline-formula>) as a weight to construct the weighted <inline-formula> <tex-math notation="LaTeX">T_{\mathrm {2am}} </tex-math></inline-formula> (<inline-formula> <tex-math notation="LaTeX">T_{\mathrm {2wam}} </tex-math></inline-formula>). <inline-formula> <tex-math notation="LaTeX">T_{\mathrm {2wam}} </tex-math></inline-formula> was highly suitable for reflecting the seepage ability of the pores and was directly calculated from the NMR echo data using an IT without an inversion. A new permeability calculation model was developed based on <inline-formula> <tex-math notation="LaTeX">T_{\mathrm {2wam}} </tex-math></inline-formula>. The numerical simulation and core experimental results verified the effectiveness of the new method.]]></description><subject>Bound water</subject><subject>Bound water saturation</subject><subject>Coefficients</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Data</subject><subject>Data models</subject><subject>Echoes</subject><subject>Fluids</subject><subject>Hyperbolic functions</subject><subject>integral transform (IT)</subject><subject>Integral transforms</subject><subject>Inversion</subject><subject>Magnetic induction</subject><subject>Magnetic permeability</subject><subject>Mathematical models</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>nuclear magnetic resonance (NMR)</subject><subject>Numerical models</subject><subject>Parameters</subject><subject>Permeability</subject><subject>Relaxation time</subject><subject>Reservoirs</subject><subject>Sandstone</subject><subject>Saturation</subject><subject>Sedimentary rocks</subject><subject>Seepage</subject><subject>Signal to noise ratio</subject><subject>tight sandstone</subject><subject>Transforms</subject><subject>Trigonometric functions</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFPwjAQxxujiYh-AONLE5-Hvbbr1kdFRBNQAvjcdF0rI2PDtnvg2zsC8ekuud__LvdD6B7ICIDIp_V0uRpRAnJEJQEAeYEGkKZ5QgTnl2jQT0RCc0mv0U0IW0KAp5AN0Hxho2_3m0OojK7xQnu9s9F6PNa16Wodq7bBLzrYEvfN53yJJ2bT4lcdNa4avK5-NhGvdFOG2Db2Fl05XQd7d65D9P02WY_fk9nX9GP8PEsMlSwmLmVQutI6bSgIa11BBcmz0riCMVpIoFLzIiOFtilzTEOWCWeAc55mDhxhQ_R42rv37W9nQ1TbtvNNf1JRKoD2PwP0FJwo49sQvHVq76ud9gcFRB2tqaM1dbSmztb6zMMpU1lr__lcZMClYH90-Wg5</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Jin, Guowen</creator><creator>Xie, Ranhong</creator><creator>Liu, Mi</creator><creator>Guo, Jiangfeng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8420-0143</orcidid><orcidid>https://orcid.org/0000-0002-5237-4544</orcidid></search><sort><creationdate>20190801</creationdate><title>Petrophysical Parameter Calculation Based on NMR Echo Data in Tight Sandstone</title><author>Jin, Guowen ; Xie, Ranhong ; Liu, Mi ; Guo, Jiangfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-f531dfdefac216eefb26087dcfb332b9129a4b70bae53f3a1776fc144457f1f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bound water</topic><topic>Bound water saturation</topic><topic>Coefficients</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Data</topic><topic>Data models</topic><topic>Echoes</topic><topic>Fluids</topic><topic>Hyperbolic functions</topic><topic>integral transform (IT)</topic><topic>Integral transforms</topic><topic>Inversion</topic><topic>Magnetic induction</topic><topic>Magnetic permeability</topic><topic>Mathematical models</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>nuclear magnetic resonance (NMR)</topic><topic>Numerical models</topic><topic>Parameters</topic><topic>Permeability</topic><topic>Relaxation time</topic><topic>Reservoirs</topic><topic>Sandstone</topic><topic>Saturation</topic><topic>Sedimentary rocks</topic><topic>Seepage</topic><topic>Signal to noise ratio</topic><topic>tight sandstone</topic><topic>Transforms</topic><topic>Trigonometric functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Guowen</creatorcontrib><creatorcontrib>Xie, Ranhong</creatorcontrib><creatorcontrib>Liu, Mi</creatorcontrib><creatorcontrib>Guo, Jiangfeng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jin, Guowen</au><au>Xie, Ranhong</au><au>Liu, Mi</au><au>Guo, Jiangfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Petrophysical Parameter Calculation Based on NMR Echo Data in Tight Sandstone</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2019-08-01</date><risdate>2019</risdate><volume>57</volume><issue>8</issue><spage>5618</spage><epage>5625</epage><pages>5618-5625</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract><![CDATA[Bound water saturation (<inline-formula> <tex-math notation="LaTeX">S_{\mathrm {wb}} </tex-math></inline-formula>) and permeability are the important petrophysical parameters. However, the traditional methods for the calculation of <inline-formula> <tex-math notation="LaTeX">S_{\mathrm {wb}} </tex-math></inline-formula> and permeability based on the nuclear magnetic resonance (NMR) transverse relaxation time (<inline-formula> <tex-math notation="LaTeX">T_{2} </tex-math></inline-formula>) distributions are not applicable for tight sandstone because the NMR data have a low signal-to-noise ratio and the calculation models have certain disadvantages. In this paper, we present a new method for the calculation of <inline-formula> <tex-math notation="LaTeX">S_{\mathrm {wb}} </tex-math></inline-formula> and permeability using integral transforms (ITs) of the NMR echo data in tight sandstone. First, the tapered cutoff function was established using the Laplace transform function of the exponential hyperbolic sine function based on the film model; <inline-formula> <tex-math notation="LaTeX">S_{\mathrm {wb}} </tex-math></inline-formula> was directly calculated from the echo data using the exponential hyperbolic sine transform without an inversion of the <inline-formula> <tex-math notation="LaTeX">T_{2} </tex-math></inline-formula> distribution. The position and slope of the median point, both of which control the shape of the tapered cutoff function, were determined by core experiments. Subsequently, the tapered cutoff function representing the proportion coefficients of the free fluids in the pore space was added to the arithmetic mean of the <inline-formula> <tex-math notation="LaTeX">T_{2} </tex-math></inline-formula> (<inline-formula> <tex-math notation="LaTeX">T_{\mathrm {2am}} </tex-math></inline-formula>) as a weight to construct the weighted <inline-formula> <tex-math notation="LaTeX">T_{\mathrm {2am}} </tex-math></inline-formula> (<inline-formula> <tex-math notation="LaTeX">T_{\mathrm {2wam}} </tex-math></inline-formula>). <inline-formula> <tex-math notation="LaTeX">T_{\mathrm {2wam}} </tex-math></inline-formula> was highly suitable for reflecting the seepage ability of the pores and was directly calculated from the NMR echo data using an IT without an inversion. A new permeability calculation model was developed based on <inline-formula> <tex-math notation="LaTeX">T_{\mathrm {2wam}} </tex-math></inline-formula>. The numerical simulation and core experimental results verified the effectiveness of the new method.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2019.2901119</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8420-0143</orcidid><orcidid>https://orcid.org/0000-0002-5237-4544</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2019-08, Vol.57 (8), p.5618-5625
issn 0196-2892
1558-0644
language eng
recordid cdi_crossref_primary_10_1109_TGRS_2019_2901119
source IEEE Electronic Library (IEL)
subjects Bound water
Bound water saturation
Coefficients
Computational fluid dynamics
Computer simulation
Data
Data models
Echoes
Fluids
Hyperbolic functions
integral transform (IT)
Integral transforms
Inversion
Magnetic induction
Magnetic permeability
Mathematical models
NMR
Nuclear magnetic resonance
nuclear magnetic resonance (NMR)
Numerical models
Parameters
Permeability
Relaxation time
Reservoirs
Sandstone
Saturation
Sedimentary rocks
Seepage
Signal to noise ratio
tight sandstone
Transforms
Trigonometric functions
title Petrophysical Parameter Calculation Based on NMR Echo Data in Tight Sandstone
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T21%3A16%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Petrophysical%20Parameter%20Calculation%20Based%20on%20NMR%20Echo%20Data%20in%20Tight%20Sandstone&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Jin,%20Guowen&rft.date=2019-08-01&rft.volume=57&rft.issue=8&rft.spage=5618&rft.epage=5625&rft.pages=5618-5625&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2019.2901119&rft_dat=%3Cproquest_RIE%3E2261264411%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2261264411&rft_id=info:pmid/&rft_ieee_id=8671496&rfr_iscdi=true