Unsupervised Clustering and Active Learning of Hyperspectral Images With Nonlinear Diffusion
The problem of unsupervised learning and segmentation of hyperspectral images is a significant challenge in remote sensing. The high dimensionality of hyperspectral data, presence of substantial noise, and overlap of classes all contribute to the difficulty of automatically clustering and segmenting...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2019-03, Vol.57 (3), p.1829-1845 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1845 |
---|---|
container_issue | 3 |
container_start_page | 1829 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 57 |
creator | Murphy, James M. Maggioni, Mauro |
description | The problem of unsupervised learning and segmentation of hyperspectral images is a significant challenge in remote sensing. The high dimensionality of hyperspectral data, presence of substantial noise, and overlap of classes all contribute to the difficulty of automatically clustering and segmenting hyperspectral images. We propose an unsupervised learning technique called spectral-spatial diffusion learning (DLSS) that combines a geometric estimation of class modes with a diffusion-inspired labeling that incorporates both spectral and spatial information. The mode estimation incorporates the geometry of the hyperspectral data by using diffusion distance to promote learning a unique mode from each class. These class modes are then used to label all the points by a joint spectral-spatial nonlinear diffusion process. A related variation of DLSS is also discussed, which enables active learning by requesting labels for a very small number of well-chosen pixels, dramatically boosting overall clustering results. Extensive experimental analysis demonstrates the efficacy of the proposed methods against benchmark and state-of-the-art hyperspectral analysis techniques on a variety of real data sets, their robustness to choices of parameters, and their low computational complexity. |
doi_str_mv | 10.1109/TGRS.2018.2869723 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2018_2869723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8481477</ieee_id><sourcerecordid>2187965004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-74a2ec4f4d833039a51659efc7d3872ec2ab430fe11315eecdab937dc2ea2ddd3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2ZrzbJ5Zi6DYaCbngjlKw5nRldOpN2sH9vy4ZXB97zvOfAg9A9JSNKiX5aTj8-R4xQNWIq05LxCzSgaaoSkglxiQaE6ixhSrNrdBPjlhAqUioH6HvlY7uHcHARLJ5UbWwgOL_Bxls8Lhp3ALwAE3yf1SWeHTs47qFogqnwfGc2EPGXa37wW-0r5zsUP7uybKOr_S26Kk0V4e48h2j1-rKczJLF-3Q-GS-SgmneJFIYBoUohVWcE65NSrNUQ1lIy5XsVsysBSclUMppClBYs9Zc2oKBYdZaPkSPp7v7UP-2EJt8W7fBdy9zRpXUWUqI6Ch6oopQxxigzPfB7Uw45pTkvcS8l5j3EvOzxK7zcOo4APjnlVBUSMn_AC-qb2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2187965004</pqid></control><display><type>article</type><title>Unsupervised Clustering and Active Learning of Hyperspectral Images With Nonlinear Diffusion</title><source>IEEE/IET Electronic Library</source><creator>Murphy, James M. ; Maggioni, Mauro</creator><creatorcontrib>Murphy, James M. ; Maggioni, Mauro</creatorcontrib><description>The problem of unsupervised learning and segmentation of hyperspectral images is a significant challenge in remote sensing. The high dimensionality of hyperspectral data, presence of substantial noise, and overlap of classes all contribute to the difficulty of automatically clustering and segmenting hyperspectral images. We propose an unsupervised learning technique called spectral-spatial diffusion learning (DLSS) that combines a geometric estimation of class modes with a diffusion-inspired labeling that incorporates both spectral and spatial information. The mode estimation incorporates the geometry of the hyperspectral data by using diffusion distance to promote learning a unique mode from each class. These class modes are then used to label all the points by a joint spectral-spatial nonlinear diffusion process. A related variation of DLSS is also discussed, which enables active learning by requesting labels for a very small number of well-chosen pixels, dramatically boosting overall clustering results. Extensive experimental analysis demonstrates the efficacy of the proposed methods against benchmark and state-of-the-art hyperspectral analysis techniques on a variety of real data sets, their robustness to choices of parameters, and their low computational complexity.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2018.2869723</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Active learning ; Clustering ; Clustering algorithms ; Computer applications ; Data ; Diffusion ; Estimation ; graph theory ; harmonic analysis ; Hyperspectral imaging ; Image processing ; Image segmentation ; Labeling ; Labels ; Machine learning ; Parameter robustness ; Remote sensing ; Robustness ; Robustness (mathematics) ; Satellites ; Spatial data ; Spatial discrimination learning ; Spectra ; Training ; Unsupervised learning</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2019-03, Vol.57 (3), p.1829-1845</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-74a2ec4f4d833039a51659efc7d3872ec2ab430fe11315eecdab937dc2ea2ddd3</citedby><cites>FETCH-LOGICAL-c293t-74a2ec4f4d833039a51659efc7d3872ec2ab430fe11315eecdab937dc2ea2ddd3</cites><orcidid>0000-0001-6598-044X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8481477$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8481477$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Murphy, James M.</creatorcontrib><creatorcontrib>Maggioni, Mauro</creatorcontrib><title>Unsupervised Clustering and Active Learning of Hyperspectral Images With Nonlinear Diffusion</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>The problem of unsupervised learning and segmentation of hyperspectral images is a significant challenge in remote sensing. The high dimensionality of hyperspectral data, presence of substantial noise, and overlap of classes all contribute to the difficulty of automatically clustering and segmenting hyperspectral images. We propose an unsupervised learning technique called spectral-spatial diffusion learning (DLSS) that combines a geometric estimation of class modes with a diffusion-inspired labeling that incorporates both spectral and spatial information. The mode estimation incorporates the geometry of the hyperspectral data by using diffusion distance to promote learning a unique mode from each class. These class modes are then used to label all the points by a joint spectral-spatial nonlinear diffusion process. A related variation of DLSS is also discussed, which enables active learning by requesting labels for a very small number of well-chosen pixels, dramatically boosting overall clustering results. Extensive experimental analysis demonstrates the efficacy of the proposed methods against benchmark and state-of-the-art hyperspectral analysis techniques on a variety of real data sets, their robustness to choices of parameters, and their low computational complexity.</description><subject>Active learning</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Computer applications</subject><subject>Data</subject><subject>Diffusion</subject><subject>Estimation</subject><subject>graph theory</subject><subject>harmonic analysis</subject><subject>Hyperspectral imaging</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Labeling</subject><subject>Labels</subject><subject>Machine learning</subject><subject>Parameter robustness</subject><subject>Remote sensing</subject><subject>Robustness</subject><subject>Robustness (mathematics)</subject><subject>Satellites</subject><subject>Spatial data</subject><subject>Spatial discrimination learning</subject><subject>Spectra</subject><subject>Training</subject><subject>Unsupervised learning</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2ZrzbJ5Zi6DYaCbngjlKw5nRldOpN2sH9vy4ZXB97zvOfAg9A9JSNKiX5aTj8-R4xQNWIq05LxCzSgaaoSkglxiQaE6ixhSrNrdBPjlhAqUioH6HvlY7uHcHARLJ5UbWwgOL_Bxls8Lhp3ALwAE3yf1SWeHTs47qFogqnwfGc2EPGXa37wW-0r5zsUP7uybKOr_S26Kk0V4e48h2j1-rKczJLF-3Q-GS-SgmneJFIYBoUohVWcE65NSrNUQ1lIy5XsVsysBSclUMppClBYs9Zc2oKBYdZaPkSPp7v7UP-2EJt8W7fBdy9zRpXUWUqI6Ch6oopQxxigzPfB7Uw45pTkvcS8l5j3EvOzxK7zcOo4APjnlVBUSMn_AC-qb2Q</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Murphy, James M.</creator><creator>Maggioni, Mauro</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6598-044X</orcidid></search><sort><creationdate>20190301</creationdate><title>Unsupervised Clustering and Active Learning of Hyperspectral Images With Nonlinear Diffusion</title><author>Murphy, James M. ; Maggioni, Mauro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-74a2ec4f4d833039a51659efc7d3872ec2ab430fe11315eecdab937dc2ea2ddd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Active learning</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Computer applications</topic><topic>Data</topic><topic>Diffusion</topic><topic>Estimation</topic><topic>graph theory</topic><topic>harmonic analysis</topic><topic>Hyperspectral imaging</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Labeling</topic><topic>Labels</topic><topic>Machine learning</topic><topic>Parameter robustness</topic><topic>Remote sensing</topic><topic>Robustness</topic><topic>Robustness (mathematics)</topic><topic>Satellites</topic><topic>Spatial data</topic><topic>Spatial discrimination learning</topic><topic>Spectra</topic><topic>Training</topic><topic>Unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murphy, James M.</creatorcontrib><creatorcontrib>Maggioni, Mauro</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Murphy, James M.</au><au>Maggioni, Mauro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unsupervised Clustering and Active Learning of Hyperspectral Images With Nonlinear Diffusion</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>57</volume><issue>3</issue><spage>1829</spage><epage>1845</epage><pages>1829-1845</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>The problem of unsupervised learning and segmentation of hyperspectral images is a significant challenge in remote sensing. The high dimensionality of hyperspectral data, presence of substantial noise, and overlap of classes all contribute to the difficulty of automatically clustering and segmenting hyperspectral images. We propose an unsupervised learning technique called spectral-spatial diffusion learning (DLSS) that combines a geometric estimation of class modes with a diffusion-inspired labeling that incorporates both spectral and spatial information. The mode estimation incorporates the geometry of the hyperspectral data by using diffusion distance to promote learning a unique mode from each class. These class modes are then used to label all the points by a joint spectral-spatial nonlinear diffusion process. A related variation of DLSS is also discussed, which enables active learning by requesting labels for a very small number of well-chosen pixels, dramatically boosting overall clustering results. Extensive experimental analysis demonstrates the efficacy of the proposed methods against benchmark and state-of-the-art hyperspectral analysis techniques on a variety of real data sets, their robustness to choices of parameters, and their low computational complexity.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2018.2869723</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-6598-044X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2019-03, Vol.57 (3), p.1829-1845 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TGRS_2018_2869723 |
source | IEEE/IET Electronic Library |
subjects | Active learning Clustering Clustering algorithms Computer applications Data Diffusion Estimation graph theory harmonic analysis Hyperspectral imaging Image processing Image segmentation Labeling Labels Machine learning Parameter robustness Remote sensing Robustness Robustness (mathematics) Satellites Spatial data Spatial discrimination learning Spectra Training Unsupervised learning |
title | Unsupervised Clustering and Active Learning of Hyperspectral Images With Nonlinear Diffusion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T11%3A22%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unsupervised%20Clustering%20and%20Active%20Learning%20of%20Hyperspectral%20Images%20With%20Nonlinear%20Diffusion&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Murphy,%20James%20M.&rft.date=2019-03-01&rft.volume=57&rft.issue=3&rft.spage=1829&rft.epage=1845&rft.pages=1829-1845&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2018.2869723&rft_dat=%3Cproquest_RIE%3E2187965004%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2187965004&rft_id=info:pmid/&rft_ieee_id=8481477&rfr_iscdi=true |