On the Generation of Gapless and Seamless Daily Surface Reflectance Data

The land surface reflectance data are indispensable to generate many other land products. Global land surface reflectance data have been routinely produced from remote sensing sensors aboard different satellite platforms. However, the original data, especially the daily data, suffer from a large num...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2018-08, Vol.56 (8), p.4289-4306
Hauptverfasser: Yang, Gang, Shen, Huanfeng, Sun, Weiwei, Li, Jialin, Diao, Ninghui, He, Zongyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4306
container_issue 8
container_start_page 4289
container_title IEEE transactions on geoscience and remote sensing
container_volume 56
creator Yang, Gang
Shen, Huanfeng
Sun, Weiwei
Li, Jialin
Diao, Ninghui
He, Zongyi
description The land surface reflectance data are indispensable to generate many other land products. Global land surface reflectance data have been routinely produced from remote sensing sensors aboard different satellite platforms. However, the original data, especially the daily data, suffer from a large number of spatial gaps, which result from atmospheric contamination and instrument deficiencies. This seriously limits their further applications. Many composite products with less spatial gaps have been generated to solve the above problem, but they easily sacrifice their temporal resolutions of original data. Even worse, they cannot be directly implemented in realistic applications because of the noise and composite seams. This paper proposes a temporal-spatial reconstruction method (TSRM) to generate daily gapless and seamless land surface reflectance data. The TSRM integrates both temporal and spatial information for recovering different land cover types using three processing steps. First, spatial gaps are coarsely filled with multiyear weighted average (Step1). After that, all the gaps that are not filled in the first step are interpolated by using harmonic analysis of time series with true value constraint (Step2). Finally, the reconstructed results in the last step are seamlessly processed using the Poisson image editing method, and the seamless daily reflectance data set is generated (Step3). The Moderate Resolution Imaging Spectroradiometer reflectance data set (MOD09GA and MYD09GA) on two testing areas is selected to verify the performance of the proposed TSRM. Experimental results show that the TSRM has good performance with regard to maintaining the temporal and spatial integrity of the daily land surface reflectance data. Results on different testing sites also demonstrate that the TSRM preserves spectral integrity with clear seasonal trends for each spectral band.
doi_str_mv 10.1109/TGRS.2018.2810271
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2018_2810271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8325424</ieee_id><sourcerecordid>2117079187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-2a5277b7d72b46d3de7d500581c034a3428d5981723dc2d4a2bf0fbda66ed6853</originalsourceid><addsrcrecordid>eNo9kMFKw0AQhhdRsFYfQLwseE7dmd3Nbo7SahUKhbael012gilpUjfpoW9vaoun-Qe-fwY-xh5BTABE9rKZr9YTFGAnaEGggSs2Aq1tIlKlrtlIQJYmaDO8ZXddtxUClAYzYh_LhvffxOfUUPR91Ta8Lfnc72vqOu6bwNfkd3_LzFf1ka8PsfQF8RWVNRW9b4Y8872_Zzelrzt6uMwx-3p_20w_ksVy_jl9XSQFZrJP0Gs0JjfBYK7SIAOZoIXQFgohlZcKbdCZBYMyFBiUx7wUZR58mlJIrZZj9ny-u4_tz4G63m3bQ2yGlw4BjDAZWDNQcKaK2HZdpNLtY7Xz8ehAuJMwdxLmTsLcRdjQeTp3KiL6561ErVDJXyG0ZVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117079187</pqid></control><display><type>article</type><title>On the Generation of Gapless and Seamless Daily Surface Reflectance Data</title><source>IEEE Electronic Library (IEL)</source><creator>Yang, Gang ; Shen, Huanfeng ; Sun, Weiwei ; Li, Jialin ; Diao, Ninghui ; He, Zongyi</creator><creatorcontrib>Yang, Gang ; Shen, Huanfeng ; Sun, Weiwei ; Li, Jialin ; Diao, Ninghui ; He, Zongyi</creatorcontrib><description>The land surface reflectance data are indispensable to generate many other land products. Global land surface reflectance data have been routinely produced from remote sensing sensors aboard different satellite platforms. However, the original data, especially the daily data, suffer from a large number of spatial gaps, which result from atmospheric contamination and instrument deficiencies. This seriously limits their further applications. Many composite products with less spatial gaps have been generated to solve the above problem, but they easily sacrifice their temporal resolutions of original data. Even worse, they cannot be directly implemented in realistic applications because of the noise and composite seams. This paper proposes a temporal-spatial reconstruction method (TSRM) to generate daily gapless and seamless land surface reflectance data. The TSRM integrates both temporal and spatial information for recovering different land cover types using three processing steps. First, spatial gaps are coarsely filled with multiyear weighted average (Step1). After that, all the gaps that are not filled in the first step are interpolated by using harmonic analysis of time series with true value constraint (Step2). Finally, the reconstructed results in the last step are seamlessly processed using the Poisson image editing method, and the seamless daily reflectance data set is generated (Step3). The Moderate Resolution Imaging Spectroradiometer reflectance data set (MOD09GA and MYD09GA) on two testing areas is selected to verify the performance of the proposed TSRM. Experimental results show that the TSRM has good performance with regard to maintaining the temporal and spatial integrity of the daily land surface reflectance data. Results on different testing sites also demonstrate that the TSRM preserves spectral integrity with clear seasonal trends for each spectral band.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2018.2810271</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Air pollution ; Chemical industry ; Clouds ; Contamination ; Daily ; Data ; Fourier analysis ; Harmonic analysis ; Harmonic analysis of time series (HANTS) ; Image reconstruction ; Imaging techniques ; Information processing ; Integrity ; Land cover ; Land surface ; Meteorology ; Methods ; MOD09 ; Moderate Resolution Imaging Spectroradiometer (MODIS) ; MODIS ; MODIS surface reflectance ; Plant growth ; Poisson image editing ; Reflectance ; Remote sensing ; Remote sensors ; Satellites ; Sea surface ; Seams ; Sediment transport ; Spatial data ; Spectroradiometers ; Testing ; time series ; Time series analysis</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2018-08, Vol.56 (8), p.4289-4306</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-2a5277b7d72b46d3de7d500581c034a3428d5981723dc2d4a2bf0fbda66ed6853</citedby><cites>FETCH-LOGICAL-c293t-2a5277b7d72b46d3de7d500581c034a3428d5981723dc2d4a2bf0fbda66ed6853</cites><orcidid>0000-0002-4140-1869 ; 0000-0002-7001-2037</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8325424$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8325424$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yang, Gang</creatorcontrib><creatorcontrib>Shen, Huanfeng</creatorcontrib><creatorcontrib>Sun, Weiwei</creatorcontrib><creatorcontrib>Li, Jialin</creatorcontrib><creatorcontrib>Diao, Ninghui</creatorcontrib><creatorcontrib>He, Zongyi</creatorcontrib><title>On the Generation of Gapless and Seamless Daily Surface Reflectance Data</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>The land surface reflectance data are indispensable to generate many other land products. Global land surface reflectance data have been routinely produced from remote sensing sensors aboard different satellite platforms. However, the original data, especially the daily data, suffer from a large number of spatial gaps, which result from atmospheric contamination and instrument deficiencies. This seriously limits their further applications. Many composite products with less spatial gaps have been generated to solve the above problem, but they easily sacrifice their temporal resolutions of original data. Even worse, they cannot be directly implemented in realistic applications because of the noise and composite seams. This paper proposes a temporal-spatial reconstruction method (TSRM) to generate daily gapless and seamless land surface reflectance data. The TSRM integrates both temporal and spatial information for recovering different land cover types using three processing steps. First, spatial gaps are coarsely filled with multiyear weighted average (Step1). After that, all the gaps that are not filled in the first step are interpolated by using harmonic analysis of time series with true value constraint (Step2). Finally, the reconstructed results in the last step are seamlessly processed using the Poisson image editing method, and the seamless daily reflectance data set is generated (Step3). The Moderate Resolution Imaging Spectroradiometer reflectance data set (MOD09GA and MYD09GA) on two testing areas is selected to verify the performance of the proposed TSRM. Experimental results show that the TSRM has good performance with regard to maintaining the temporal and spatial integrity of the daily land surface reflectance data. Results on different testing sites also demonstrate that the TSRM preserves spectral integrity with clear seasonal trends for each spectral band.</description><subject>Air pollution</subject><subject>Chemical industry</subject><subject>Clouds</subject><subject>Contamination</subject><subject>Daily</subject><subject>Data</subject><subject>Fourier analysis</subject><subject>Harmonic analysis</subject><subject>Harmonic analysis of time series (HANTS)</subject><subject>Image reconstruction</subject><subject>Imaging techniques</subject><subject>Information processing</subject><subject>Integrity</subject><subject>Land cover</subject><subject>Land surface</subject><subject>Meteorology</subject><subject>Methods</subject><subject>MOD09</subject><subject>Moderate Resolution Imaging Spectroradiometer (MODIS)</subject><subject>MODIS</subject><subject>MODIS surface reflectance</subject><subject>Plant growth</subject><subject>Poisson image editing</subject><subject>Reflectance</subject><subject>Remote sensing</subject><subject>Remote sensors</subject><subject>Satellites</subject><subject>Sea surface</subject><subject>Seams</subject><subject>Sediment transport</subject><subject>Spatial data</subject><subject>Spectroradiometers</subject><subject>Testing</subject><subject>time series</subject><subject>Time series analysis</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFKw0AQhhdRsFYfQLwseE7dmd3Nbo7SahUKhbael012gilpUjfpoW9vaoun-Qe-fwY-xh5BTABE9rKZr9YTFGAnaEGggSs2Aq1tIlKlrtlIQJYmaDO8ZXddtxUClAYzYh_LhvffxOfUUPR91Ta8Lfnc72vqOu6bwNfkd3_LzFf1ka8PsfQF8RWVNRW9b4Y8872_Zzelrzt6uMwx-3p_20w_ksVy_jl9XSQFZrJP0Gs0JjfBYK7SIAOZoIXQFgohlZcKbdCZBYMyFBiUx7wUZR58mlJIrZZj9ny-u4_tz4G63m3bQ2yGlw4BjDAZWDNQcKaK2HZdpNLtY7Xz8ehAuJMwdxLmTsLcRdjQeTp3KiL6561ErVDJXyG0ZVQ</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Yang, Gang</creator><creator>Shen, Huanfeng</creator><creator>Sun, Weiwei</creator><creator>Li, Jialin</creator><creator>Diao, Ninghui</creator><creator>He, Zongyi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4140-1869</orcidid><orcidid>https://orcid.org/0000-0002-7001-2037</orcidid></search><sort><creationdate>20180801</creationdate><title>On the Generation of Gapless and Seamless Daily Surface Reflectance Data</title><author>Yang, Gang ; Shen, Huanfeng ; Sun, Weiwei ; Li, Jialin ; Diao, Ninghui ; He, Zongyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-2a5277b7d72b46d3de7d500581c034a3428d5981723dc2d4a2bf0fbda66ed6853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Air pollution</topic><topic>Chemical industry</topic><topic>Clouds</topic><topic>Contamination</topic><topic>Daily</topic><topic>Data</topic><topic>Fourier analysis</topic><topic>Harmonic analysis</topic><topic>Harmonic analysis of time series (HANTS)</topic><topic>Image reconstruction</topic><topic>Imaging techniques</topic><topic>Information processing</topic><topic>Integrity</topic><topic>Land cover</topic><topic>Land surface</topic><topic>Meteorology</topic><topic>Methods</topic><topic>MOD09</topic><topic>Moderate Resolution Imaging Spectroradiometer (MODIS)</topic><topic>MODIS</topic><topic>MODIS surface reflectance</topic><topic>Plant growth</topic><topic>Poisson image editing</topic><topic>Reflectance</topic><topic>Remote sensing</topic><topic>Remote sensors</topic><topic>Satellites</topic><topic>Sea surface</topic><topic>Seams</topic><topic>Sediment transport</topic><topic>Spatial data</topic><topic>Spectroradiometers</topic><topic>Testing</topic><topic>time series</topic><topic>Time series analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Gang</creatorcontrib><creatorcontrib>Shen, Huanfeng</creatorcontrib><creatorcontrib>Sun, Weiwei</creatorcontrib><creatorcontrib>Li, Jialin</creatorcontrib><creatorcontrib>Diao, Ninghui</creatorcontrib><creatorcontrib>He, Zongyi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, Gang</au><au>Shen, Huanfeng</au><au>Sun, Weiwei</au><au>Li, Jialin</au><au>Diao, Ninghui</au><au>He, Zongyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Generation of Gapless and Seamless Daily Surface Reflectance Data</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>56</volume><issue>8</issue><spage>4289</spage><epage>4306</epage><pages>4289-4306</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>The land surface reflectance data are indispensable to generate many other land products. Global land surface reflectance data have been routinely produced from remote sensing sensors aboard different satellite platforms. However, the original data, especially the daily data, suffer from a large number of spatial gaps, which result from atmospheric contamination and instrument deficiencies. This seriously limits their further applications. Many composite products with less spatial gaps have been generated to solve the above problem, but they easily sacrifice their temporal resolutions of original data. Even worse, they cannot be directly implemented in realistic applications because of the noise and composite seams. This paper proposes a temporal-spatial reconstruction method (TSRM) to generate daily gapless and seamless land surface reflectance data. The TSRM integrates both temporal and spatial information for recovering different land cover types using three processing steps. First, spatial gaps are coarsely filled with multiyear weighted average (Step1). After that, all the gaps that are not filled in the first step are interpolated by using harmonic analysis of time series with true value constraint (Step2). Finally, the reconstructed results in the last step are seamlessly processed using the Poisson image editing method, and the seamless daily reflectance data set is generated (Step3). The Moderate Resolution Imaging Spectroradiometer reflectance data set (MOD09GA and MYD09GA) on two testing areas is selected to verify the performance of the proposed TSRM. Experimental results show that the TSRM has good performance with regard to maintaining the temporal and spatial integrity of the daily land surface reflectance data. Results on different testing sites also demonstrate that the TSRM preserves spectral integrity with clear seasonal trends for each spectral band.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2018.2810271</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-4140-1869</orcidid><orcidid>https://orcid.org/0000-0002-7001-2037</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2018-08, Vol.56 (8), p.4289-4306
issn 0196-2892
1558-0644
language eng
recordid cdi_crossref_primary_10_1109_TGRS_2018_2810271
source IEEE Electronic Library (IEL)
subjects Air pollution
Chemical industry
Clouds
Contamination
Daily
Data
Fourier analysis
Harmonic analysis
Harmonic analysis of time series (HANTS)
Image reconstruction
Imaging techniques
Information processing
Integrity
Land cover
Land surface
Meteorology
Methods
MOD09
Moderate Resolution Imaging Spectroradiometer (MODIS)
MODIS
MODIS surface reflectance
Plant growth
Poisson image editing
Reflectance
Remote sensing
Remote sensors
Satellites
Sea surface
Seams
Sediment transport
Spatial data
Spectroradiometers
Testing
time series
Time series analysis
title On the Generation of Gapless and Seamless Daily Surface Reflectance Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T06%3A06%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Generation%20of%20Gapless%20and%20Seamless%20Daily%20Surface%20Reflectance%20Data&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Yang,%20Gang&rft.date=2018-08-01&rft.volume=56&rft.issue=8&rft.spage=4289&rft.epage=4306&rft.pages=4289-4306&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2018.2810271&rft_dat=%3Cproquest_RIE%3E2117079187%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117079187&rft_id=info:pmid/&rft_ieee_id=8325424&rfr_iscdi=true