On the Generation of Gapless and Seamless Daily Surface Reflectance Data
The land surface reflectance data are indispensable to generate many other land products. Global land surface reflectance data have been routinely produced from remote sensing sensors aboard different satellite platforms. However, the original data, especially the daily data, suffer from a large num...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2018-08, Vol.56 (8), p.4289-4306 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4306 |
---|---|
container_issue | 8 |
container_start_page | 4289 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 56 |
creator | Yang, Gang Shen, Huanfeng Sun, Weiwei Li, Jialin Diao, Ninghui He, Zongyi |
description | The land surface reflectance data are indispensable to generate many other land products. Global land surface reflectance data have been routinely produced from remote sensing sensors aboard different satellite platforms. However, the original data, especially the daily data, suffer from a large number of spatial gaps, which result from atmospheric contamination and instrument deficiencies. This seriously limits their further applications. Many composite products with less spatial gaps have been generated to solve the above problem, but they easily sacrifice their temporal resolutions of original data. Even worse, they cannot be directly implemented in realistic applications because of the noise and composite seams. This paper proposes a temporal-spatial reconstruction method (TSRM) to generate daily gapless and seamless land surface reflectance data. The TSRM integrates both temporal and spatial information for recovering different land cover types using three processing steps. First, spatial gaps are coarsely filled with multiyear weighted average (Step1). After that, all the gaps that are not filled in the first step are interpolated by using harmonic analysis of time series with true value constraint (Step2). Finally, the reconstructed results in the last step are seamlessly processed using the Poisson image editing method, and the seamless daily reflectance data set is generated (Step3). The Moderate Resolution Imaging Spectroradiometer reflectance data set (MOD09GA and MYD09GA) on two testing areas is selected to verify the performance of the proposed TSRM. Experimental results show that the TSRM has good performance with regard to maintaining the temporal and spatial integrity of the daily land surface reflectance data. Results on different testing sites also demonstrate that the TSRM preserves spectral integrity with clear seasonal trends for each spectral band. |
doi_str_mv | 10.1109/TGRS.2018.2810271 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2018_2810271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8325424</ieee_id><sourcerecordid>2117079187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-2a5277b7d72b46d3de7d500581c034a3428d5981723dc2d4a2bf0fbda66ed6853</originalsourceid><addsrcrecordid>eNo9kMFKw0AQhhdRsFYfQLwseE7dmd3Nbo7SahUKhbael012gilpUjfpoW9vaoun-Qe-fwY-xh5BTABE9rKZr9YTFGAnaEGggSs2Aq1tIlKlrtlIQJYmaDO8ZXddtxUClAYzYh_LhvffxOfUUPR91Ta8Lfnc72vqOu6bwNfkd3_LzFf1ka8PsfQF8RWVNRW9b4Y8872_Zzelrzt6uMwx-3p_20w_ksVy_jl9XSQFZrJP0Gs0JjfBYK7SIAOZoIXQFgohlZcKbdCZBYMyFBiUx7wUZR58mlJIrZZj9ny-u4_tz4G63m3bQ2yGlw4BjDAZWDNQcKaK2HZdpNLtY7Xz8ehAuJMwdxLmTsLcRdjQeTp3KiL6561ErVDJXyG0ZVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117079187</pqid></control><display><type>article</type><title>On the Generation of Gapless and Seamless Daily Surface Reflectance Data</title><source>IEEE Electronic Library (IEL)</source><creator>Yang, Gang ; Shen, Huanfeng ; Sun, Weiwei ; Li, Jialin ; Diao, Ninghui ; He, Zongyi</creator><creatorcontrib>Yang, Gang ; Shen, Huanfeng ; Sun, Weiwei ; Li, Jialin ; Diao, Ninghui ; He, Zongyi</creatorcontrib><description>The land surface reflectance data are indispensable to generate many other land products. Global land surface reflectance data have been routinely produced from remote sensing sensors aboard different satellite platforms. However, the original data, especially the daily data, suffer from a large number of spatial gaps, which result from atmospheric contamination and instrument deficiencies. This seriously limits their further applications. Many composite products with less spatial gaps have been generated to solve the above problem, but they easily sacrifice their temporal resolutions of original data. Even worse, they cannot be directly implemented in realistic applications because of the noise and composite seams. This paper proposes a temporal-spatial reconstruction method (TSRM) to generate daily gapless and seamless land surface reflectance data. The TSRM integrates both temporal and spatial information for recovering different land cover types using three processing steps. First, spatial gaps are coarsely filled with multiyear weighted average (Step1). After that, all the gaps that are not filled in the first step are interpolated by using harmonic analysis of time series with true value constraint (Step2). Finally, the reconstructed results in the last step are seamlessly processed using the Poisson image editing method, and the seamless daily reflectance data set is generated (Step3). The Moderate Resolution Imaging Spectroradiometer reflectance data set (MOD09GA and MYD09GA) on two testing areas is selected to verify the performance of the proposed TSRM. Experimental results show that the TSRM has good performance with regard to maintaining the temporal and spatial integrity of the daily land surface reflectance data. Results on different testing sites also demonstrate that the TSRM preserves spectral integrity with clear seasonal trends for each spectral band.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2018.2810271</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Air pollution ; Chemical industry ; Clouds ; Contamination ; Daily ; Data ; Fourier analysis ; Harmonic analysis ; Harmonic analysis of time series (HANTS) ; Image reconstruction ; Imaging techniques ; Information processing ; Integrity ; Land cover ; Land surface ; Meteorology ; Methods ; MOD09 ; Moderate Resolution Imaging Spectroradiometer (MODIS) ; MODIS ; MODIS surface reflectance ; Plant growth ; Poisson image editing ; Reflectance ; Remote sensing ; Remote sensors ; Satellites ; Sea surface ; Seams ; Sediment transport ; Spatial data ; Spectroradiometers ; Testing ; time series ; Time series analysis</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2018-08, Vol.56 (8), p.4289-4306</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-2a5277b7d72b46d3de7d500581c034a3428d5981723dc2d4a2bf0fbda66ed6853</citedby><cites>FETCH-LOGICAL-c293t-2a5277b7d72b46d3de7d500581c034a3428d5981723dc2d4a2bf0fbda66ed6853</cites><orcidid>0000-0002-4140-1869 ; 0000-0002-7001-2037</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8325424$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8325424$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yang, Gang</creatorcontrib><creatorcontrib>Shen, Huanfeng</creatorcontrib><creatorcontrib>Sun, Weiwei</creatorcontrib><creatorcontrib>Li, Jialin</creatorcontrib><creatorcontrib>Diao, Ninghui</creatorcontrib><creatorcontrib>He, Zongyi</creatorcontrib><title>On the Generation of Gapless and Seamless Daily Surface Reflectance Data</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>The land surface reflectance data are indispensable to generate many other land products. Global land surface reflectance data have been routinely produced from remote sensing sensors aboard different satellite platforms. However, the original data, especially the daily data, suffer from a large number of spatial gaps, which result from atmospheric contamination and instrument deficiencies. This seriously limits their further applications. Many composite products with less spatial gaps have been generated to solve the above problem, but they easily sacrifice their temporal resolutions of original data. Even worse, they cannot be directly implemented in realistic applications because of the noise and composite seams. This paper proposes a temporal-spatial reconstruction method (TSRM) to generate daily gapless and seamless land surface reflectance data. The TSRM integrates both temporal and spatial information for recovering different land cover types using three processing steps. First, spatial gaps are coarsely filled with multiyear weighted average (Step1). After that, all the gaps that are not filled in the first step are interpolated by using harmonic analysis of time series with true value constraint (Step2). Finally, the reconstructed results in the last step are seamlessly processed using the Poisson image editing method, and the seamless daily reflectance data set is generated (Step3). The Moderate Resolution Imaging Spectroradiometer reflectance data set (MOD09GA and MYD09GA) on two testing areas is selected to verify the performance of the proposed TSRM. Experimental results show that the TSRM has good performance with regard to maintaining the temporal and spatial integrity of the daily land surface reflectance data. Results on different testing sites also demonstrate that the TSRM preserves spectral integrity with clear seasonal trends for each spectral band.</description><subject>Air pollution</subject><subject>Chemical industry</subject><subject>Clouds</subject><subject>Contamination</subject><subject>Daily</subject><subject>Data</subject><subject>Fourier analysis</subject><subject>Harmonic analysis</subject><subject>Harmonic analysis of time series (HANTS)</subject><subject>Image reconstruction</subject><subject>Imaging techniques</subject><subject>Information processing</subject><subject>Integrity</subject><subject>Land cover</subject><subject>Land surface</subject><subject>Meteorology</subject><subject>Methods</subject><subject>MOD09</subject><subject>Moderate Resolution Imaging Spectroradiometer (MODIS)</subject><subject>MODIS</subject><subject>MODIS surface reflectance</subject><subject>Plant growth</subject><subject>Poisson image editing</subject><subject>Reflectance</subject><subject>Remote sensing</subject><subject>Remote sensors</subject><subject>Satellites</subject><subject>Sea surface</subject><subject>Seams</subject><subject>Sediment transport</subject><subject>Spatial data</subject><subject>Spectroradiometers</subject><subject>Testing</subject><subject>time series</subject><subject>Time series analysis</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFKw0AQhhdRsFYfQLwseE7dmd3Nbo7SahUKhbael012gilpUjfpoW9vaoun-Qe-fwY-xh5BTABE9rKZr9YTFGAnaEGggSs2Aq1tIlKlrtlIQJYmaDO8ZXddtxUClAYzYh_LhvffxOfUUPR91Ta8Lfnc72vqOu6bwNfkd3_LzFf1ka8PsfQF8RWVNRW9b4Y8872_Zzelrzt6uMwx-3p_20w_ksVy_jl9XSQFZrJP0Gs0JjfBYK7SIAOZoIXQFgohlZcKbdCZBYMyFBiUx7wUZR58mlJIrZZj9ny-u4_tz4G63m3bQ2yGlw4BjDAZWDNQcKaK2HZdpNLtY7Xz8ehAuJMwdxLmTsLcRdjQeTp3KiL6561ErVDJXyG0ZVQ</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Yang, Gang</creator><creator>Shen, Huanfeng</creator><creator>Sun, Weiwei</creator><creator>Li, Jialin</creator><creator>Diao, Ninghui</creator><creator>He, Zongyi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4140-1869</orcidid><orcidid>https://orcid.org/0000-0002-7001-2037</orcidid></search><sort><creationdate>20180801</creationdate><title>On the Generation of Gapless and Seamless Daily Surface Reflectance Data</title><author>Yang, Gang ; Shen, Huanfeng ; Sun, Weiwei ; Li, Jialin ; Diao, Ninghui ; He, Zongyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-2a5277b7d72b46d3de7d500581c034a3428d5981723dc2d4a2bf0fbda66ed6853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Air pollution</topic><topic>Chemical industry</topic><topic>Clouds</topic><topic>Contamination</topic><topic>Daily</topic><topic>Data</topic><topic>Fourier analysis</topic><topic>Harmonic analysis</topic><topic>Harmonic analysis of time series (HANTS)</topic><topic>Image reconstruction</topic><topic>Imaging techniques</topic><topic>Information processing</topic><topic>Integrity</topic><topic>Land cover</topic><topic>Land surface</topic><topic>Meteorology</topic><topic>Methods</topic><topic>MOD09</topic><topic>Moderate Resolution Imaging Spectroradiometer (MODIS)</topic><topic>MODIS</topic><topic>MODIS surface reflectance</topic><topic>Plant growth</topic><topic>Poisson image editing</topic><topic>Reflectance</topic><topic>Remote sensing</topic><topic>Remote sensors</topic><topic>Satellites</topic><topic>Sea surface</topic><topic>Seams</topic><topic>Sediment transport</topic><topic>Spatial data</topic><topic>Spectroradiometers</topic><topic>Testing</topic><topic>time series</topic><topic>Time series analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Gang</creatorcontrib><creatorcontrib>Shen, Huanfeng</creatorcontrib><creatorcontrib>Sun, Weiwei</creatorcontrib><creatorcontrib>Li, Jialin</creatorcontrib><creatorcontrib>Diao, Ninghui</creatorcontrib><creatorcontrib>He, Zongyi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, Gang</au><au>Shen, Huanfeng</au><au>Sun, Weiwei</au><au>Li, Jialin</au><au>Diao, Ninghui</au><au>He, Zongyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Generation of Gapless and Seamless Daily Surface Reflectance Data</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>56</volume><issue>8</issue><spage>4289</spage><epage>4306</epage><pages>4289-4306</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>The land surface reflectance data are indispensable to generate many other land products. Global land surface reflectance data have been routinely produced from remote sensing sensors aboard different satellite platforms. However, the original data, especially the daily data, suffer from a large number of spatial gaps, which result from atmospheric contamination and instrument deficiencies. This seriously limits their further applications. Many composite products with less spatial gaps have been generated to solve the above problem, but they easily sacrifice their temporal resolutions of original data. Even worse, they cannot be directly implemented in realistic applications because of the noise and composite seams. This paper proposes a temporal-spatial reconstruction method (TSRM) to generate daily gapless and seamless land surface reflectance data. The TSRM integrates both temporal and spatial information for recovering different land cover types using three processing steps. First, spatial gaps are coarsely filled with multiyear weighted average (Step1). After that, all the gaps that are not filled in the first step are interpolated by using harmonic analysis of time series with true value constraint (Step2). Finally, the reconstructed results in the last step are seamlessly processed using the Poisson image editing method, and the seamless daily reflectance data set is generated (Step3). The Moderate Resolution Imaging Spectroradiometer reflectance data set (MOD09GA and MYD09GA) on two testing areas is selected to verify the performance of the proposed TSRM. Experimental results show that the TSRM has good performance with regard to maintaining the temporal and spatial integrity of the daily land surface reflectance data. Results on different testing sites also demonstrate that the TSRM preserves spectral integrity with clear seasonal trends for each spectral band.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2018.2810271</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-4140-1869</orcidid><orcidid>https://orcid.org/0000-0002-7001-2037</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2018-08, Vol.56 (8), p.4289-4306 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TGRS_2018_2810271 |
source | IEEE Electronic Library (IEL) |
subjects | Air pollution Chemical industry Clouds Contamination Daily Data Fourier analysis Harmonic analysis Harmonic analysis of time series (HANTS) Image reconstruction Imaging techniques Information processing Integrity Land cover Land surface Meteorology Methods MOD09 Moderate Resolution Imaging Spectroradiometer (MODIS) MODIS MODIS surface reflectance Plant growth Poisson image editing Reflectance Remote sensing Remote sensors Satellites Sea surface Seams Sediment transport Spatial data Spectroradiometers Testing time series Time series analysis |
title | On the Generation of Gapless and Seamless Daily Surface Reflectance Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T06%3A06%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Generation%20of%20Gapless%20and%20Seamless%20Daily%20Surface%20Reflectance%20Data&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Yang,%20Gang&rft.date=2018-08-01&rft.volume=56&rft.issue=8&rft.spage=4289&rft.epage=4306&rft.pages=4289-4306&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2018.2810271&rft_dat=%3Cproquest_RIE%3E2117079187%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117079187&rft_id=info:pmid/&rft_ieee_id=8325424&rfr_iscdi=true |