Feature-Driven Active Learning for Hyperspectral Image Classification
Active learning (AL) has obtained a great success in supervised remotely sensed hyperspectral image classification, since it is able to select highly informative training samples. As an intrinsically biased sampling approach, AL generally favors the selection of samples following discriminative dist...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2018-01, Vol.56 (1), p.341-354 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!