On the Processing of Very High Resolution Spaceborne SAR Data: A Chirp-Modulated Back Projection Approach

A new image formation algorithm is proposed for processing very high resolution spaceborne sliding-spotlight synthetic aperture radar (SAR) data. Because of along-track antenna steering, the Doppler bandwidth of the received SAR data is expanded significantly beyond one pulse repetition frequency in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2018-01, Vol.56 (1), p.191-201
Hauptverfasser: Meng, Dadi, Ding, Chibiao, Hu, Donghui, Qiu, Xiaolan, Huang, Lijia, Han, Bing, Liu, Jiayin, Xu, Ning
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 201
container_issue 1
container_start_page 191
container_title IEEE transactions on geoscience and remote sensing
container_volume 56
creator Meng, Dadi
Ding, Chibiao
Hu, Donghui
Qiu, Xiaolan
Huang, Lijia
Han, Bing
Liu, Jiayin
Xu, Ning
description A new image formation algorithm is proposed for processing very high resolution spaceborne sliding-spotlight synthetic aperture radar (SAR) data. Because of along-track antenna steering, the Doppler bandwidth of the received SAR data is expanded significantly beyond one pulse repetition frequency interval. Furthermore, the range histories become spatially dependent in both dimensions and cannot be expressed exactly by a hyperbolic model. In our approach, we first reduce the Doppler bandwidth by a novel azimuth dechirp processing method in the range frequency domain. The data are then processed by the standard ω-κ algorithm with a fixed effective velocity. Thereafter, the chirp modulation concept is imported to rebuild new data with much shorter apertures. Finally, a standard back-projection algorithm is employed to accumulate the signal pixel by pixel along the newly built aperture. Thus, the balance between processing efficiency and precision can be controlled by adjusting the length of the new apertures. In addition, a more accurate 2-D spectrum derivation is employed to enhance the processing precision, and a novel range-splitting method is presented to accommodate the range dependence of effective velocities. Furthermore, when implementing the back projection, the image grid-the region and granularity level of which are user defined-is placed on the earth's surface instead of on the slant-range plane, and the routine geometry projection processing thus becomes dispensable.
doi_str_mv 10.1109/TGRS.2017.2744649
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2017_2744649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8038856</ieee_id><sourcerecordid>2174512457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-186b7be44868c82d4268ed41fbf3b58ca40d870ebd72f0b7f0b0bb7606b23d173</originalsourceid><addsrcrecordid>eNo9kE9PwjAYxhujiYh-AOOliedh23Vt5w1R0QSDAfS6tN07GOI62-3At3cT4uHNc3n-5P0hdE3JiFKS3q2mi-WIESpHTHIueHqCBjRJVEQE56doQGgqIqZSdo4uQtgSQnlC5QCV8wo3G8Dv3lkIoazW2BX4E_wev5TrDV5AcLu2KV2Fl7W2YJyvAC_HC_yoG32Px3iyKX0dvbm83ekGcvyg7VdftwX7FxvXtXfabi7RWaF3Aa6OOkQfz0-ryUs0m09fJ-NZZFkaNxFVwkgDnCuhrGI5Z0JBzmlhitgkympOciUJmFyyghjZHTFGCiIMi3Mq4yG6PfR2sz8thCbbutZX3WTGqOy-ZjzpXfTgst6F4KHIal9-a7_PKMl6ollPNOuJZkeiXebmkCkB4N-vSKxUIuJfSv9xbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174512457</pqid></control><display><type>article</type><title>On the Processing of Very High Resolution Spaceborne SAR Data: A Chirp-Modulated Back Projection Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Meng, Dadi ; Ding, Chibiao ; Hu, Donghui ; Qiu, Xiaolan ; Huang, Lijia ; Han, Bing ; Liu, Jiayin ; Xu, Ning</creator><creatorcontrib>Meng, Dadi ; Ding, Chibiao ; Hu, Donghui ; Qiu, Xiaolan ; Huang, Lijia ; Han, Bing ; Liu, Jiayin ; Xu, Ning</creatorcontrib><description>A new image formation algorithm is proposed for processing very high resolution spaceborne sliding-spotlight synthetic aperture radar (SAR) data. Because of along-track antenna steering, the Doppler bandwidth of the received SAR data is expanded significantly beyond one pulse repetition frequency interval. Furthermore, the range histories become spatially dependent in both dimensions and cannot be expressed exactly by a hyperbolic model. In our approach, we first reduce the Doppler bandwidth by a novel azimuth dechirp processing method in the range frequency domain. The data are then processed by the standard ω-κ algorithm with a fixed effective velocity. Thereafter, the chirp modulation concept is imported to rebuild new data with much shorter apertures. Finally, a standard back-projection algorithm is employed to accumulate the signal pixel by pixel along the newly built aperture. Thus, the balance between processing efficiency and precision can be controlled by adjusting the length of the new apertures. In addition, a more accurate 2-D spectrum derivation is employed to enhance the processing precision, and a novel range-splitting method is presented to accommodate the range dependence of effective velocities. Furthermore, when implementing the back projection, the image grid-the region and granularity level of which are user defined-is placed on the earth's surface instead of on the slant-range plane, and the routine geometry projection processing thus becomes dispensable.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2017.2744649</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Apertures ; Azimuth ; Bandwidth ; Bandwidths ; Chirp ; Data ; Dependence ; Dimensions ; Doppler effect ; Doppler sonar ; Earth ; Earth surface ; Effective velocity ; High resolution ; History ; Methods ; Pixels ; Projection ; Pulse repetition frequency ; Resolution ; SAR (radar) ; Spaceborne radar imaging ; Steering ; Synthetic aperture radar ; synthetic aperture radar (SAR)</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2018-01, Vol.56 (1), p.191-201</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-186b7be44868c82d4268ed41fbf3b58ca40d870ebd72f0b7f0b0bb7606b23d173</citedby><cites>FETCH-LOGICAL-c293t-186b7be44868c82d4268ed41fbf3b58ca40d870ebd72f0b7f0b0bb7606b23d173</cites><orcidid>0000-0003-2931-6263</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8038856$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8038856$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Meng, Dadi</creatorcontrib><creatorcontrib>Ding, Chibiao</creatorcontrib><creatorcontrib>Hu, Donghui</creatorcontrib><creatorcontrib>Qiu, Xiaolan</creatorcontrib><creatorcontrib>Huang, Lijia</creatorcontrib><creatorcontrib>Han, Bing</creatorcontrib><creatorcontrib>Liu, Jiayin</creatorcontrib><creatorcontrib>Xu, Ning</creatorcontrib><title>On the Processing of Very High Resolution Spaceborne SAR Data: A Chirp-Modulated Back Projection Approach</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>A new image formation algorithm is proposed for processing very high resolution spaceborne sliding-spotlight synthetic aperture radar (SAR) data. Because of along-track antenna steering, the Doppler bandwidth of the received SAR data is expanded significantly beyond one pulse repetition frequency interval. Furthermore, the range histories become spatially dependent in both dimensions and cannot be expressed exactly by a hyperbolic model. In our approach, we first reduce the Doppler bandwidth by a novel azimuth dechirp processing method in the range frequency domain. The data are then processed by the standard ω-κ algorithm with a fixed effective velocity. Thereafter, the chirp modulation concept is imported to rebuild new data with much shorter apertures. Finally, a standard back-projection algorithm is employed to accumulate the signal pixel by pixel along the newly built aperture. Thus, the balance between processing efficiency and precision can be controlled by adjusting the length of the new apertures. In addition, a more accurate 2-D spectrum derivation is employed to enhance the processing precision, and a novel range-splitting method is presented to accommodate the range dependence of effective velocities. Furthermore, when implementing the back projection, the image grid-the region and granularity level of which are user defined-is placed on the earth's surface instead of on the slant-range plane, and the routine geometry projection processing thus becomes dispensable.</description><subject>Algorithms</subject><subject>Apertures</subject><subject>Azimuth</subject><subject>Bandwidth</subject><subject>Bandwidths</subject><subject>Chirp</subject><subject>Data</subject><subject>Dependence</subject><subject>Dimensions</subject><subject>Doppler effect</subject><subject>Doppler sonar</subject><subject>Earth</subject><subject>Earth surface</subject><subject>Effective velocity</subject><subject>High resolution</subject><subject>History</subject><subject>Methods</subject><subject>Pixels</subject><subject>Projection</subject><subject>Pulse repetition frequency</subject><subject>Resolution</subject><subject>SAR (radar)</subject><subject>Spaceborne radar imaging</subject><subject>Steering</subject><subject>Synthetic aperture radar</subject><subject>synthetic aperture radar (SAR)</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9PwjAYxhujiYh-AOOliedh23Vt5w1R0QSDAfS6tN07GOI62-3At3cT4uHNc3n-5P0hdE3JiFKS3q2mi-WIESpHTHIueHqCBjRJVEQE56doQGgqIqZSdo4uQtgSQnlC5QCV8wo3G8Dv3lkIoazW2BX4E_wev5TrDV5AcLu2KV2Fl7W2YJyvAC_HC_yoG32Px3iyKX0dvbm83ekGcvyg7VdftwX7FxvXtXfabi7RWaF3Aa6OOkQfz0-ryUs0m09fJ-NZZFkaNxFVwkgDnCuhrGI5Z0JBzmlhitgkympOciUJmFyyghjZHTFGCiIMi3Mq4yG6PfR2sz8thCbbutZX3WTGqOy-ZjzpXfTgst6F4KHIal9-a7_PKMl6ollPNOuJZkeiXebmkCkB4N-vSKxUIuJfSv9xbw</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Meng, Dadi</creator><creator>Ding, Chibiao</creator><creator>Hu, Donghui</creator><creator>Qiu, Xiaolan</creator><creator>Huang, Lijia</creator><creator>Han, Bing</creator><creator>Liu, Jiayin</creator><creator>Xu, Ning</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2931-6263</orcidid></search><sort><creationdate>201801</creationdate><title>On the Processing of Very High Resolution Spaceborne SAR Data: A Chirp-Modulated Back Projection Approach</title><author>Meng, Dadi ; Ding, Chibiao ; Hu, Donghui ; Qiu, Xiaolan ; Huang, Lijia ; Han, Bing ; Liu, Jiayin ; Xu, Ning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-186b7be44868c82d4268ed41fbf3b58ca40d870ebd72f0b7f0b0bb7606b23d173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Apertures</topic><topic>Azimuth</topic><topic>Bandwidth</topic><topic>Bandwidths</topic><topic>Chirp</topic><topic>Data</topic><topic>Dependence</topic><topic>Dimensions</topic><topic>Doppler effect</topic><topic>Doppler sonar</topic><topic>Earth</topic><topic>Earth surface</topic><topic>Effective velocity</topic><topic>High resolution</topic><topic>History</topic><topic>Methods</topic><topic>Pixels</topic><topic>Projection</topic><topic>Pulse repetition frequency</topic><topic>Resolution</topic><topic>SAR (radar)</topic><topic>Spaceborne radar imaging</topic><topic>Steering</topic><topic>Synthetic aperture radar</topic><topic>synthetic aperture radar (SAR)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Dadi</creatorcontrib><creatorcontrib>Ding, Chibiao</creatorcontrib><creatorcontrib>Hu, Donghui</creatorcontrib><creatorcontrib>Qiu, Xiaolan</creatorcontrib><creatorcontrib>Huang, Lijia</creatorcontrib><creatorcontrib>Han, Bing</creatorcontrib><creatorcontrib>Liu, Jiayin</creatorcontrib><creatorcontrib>Xu, Ning</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Meng, Dadi</au><au>Ding, Chibiao</au><au>Hu, Donghui</au><au>Qiu, Xiaolan</au><au>Huang, Lijia</au><au>Han, Bing</au><au>Liu, Jiayin</au><au>Xu, Ning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Processing of Very High Resolution Spaceborne SAR Data: A Chirp-Modulated Back Projection Approach</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2018-01</date><risdate>2018</risdate><volume>56</volume><issue>1</issue><spage>191</spage><epage>201</epage><pages>191-201</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>A new image formation algorithm is proposed for processing very high resolution spaceborne sliding-spotlight synthetic aperture radar (SAR) data. Because of along-track antenna steering, the Doppler bandwidth of the received SAR data is expanded significantly beyond one pulse repetition frequency interval. Furthermore, the range histories become spatially dependent in both dimensions and cannot be expressed exactly by a hyperbolic model. In our approach, we first reduce the Doppler bandwidth by a novel azimuth dechirp processing method in the range frequency domain. The data are then processed by the standard ω-κ algorithm with a fixed effective velocity. Thereafter, the chirp modulation concept is imported to rebuild new data with much shorter apertures. Finally, a standard back-projection algorithm is employed to accumulate the signal pixel by pixel along the newly built aperture. Thus, the balance between processing efficiency and precision can be controlled by adjusting the length of the new apertures. In addition, a more accurate 2-D spectrum derivation is employed to enhance the processing precision, and a novel range-splitting method is presented to accommodate the range dependence of effective velocities. Furthermore, when implementing the back projection, the image grid-the region and granularity level of which are user defined-is placed on the earth's surface instead of on the slant-range plane, and the routine geometry projection processing thus becomes dispensable.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2017.2744649</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2931-6263</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2018-01, Vol.56 (1), p.191-201
issn 0196-2892
1558-0644
language eng
recordid cdi_crossref_primary_10_1109_TGRS_2017_2744649
source IEEE Electronic Library (IEL)
subjects Algorithms
Apertures
Azimuth
Bandwidth
Bandwidths
Chirp
Data
Dependence
Dimensions
Doppler effect
Doppler sonar
Earth
Earth surface
Effective velocity
High resolution
History
Methods
Pixels
Projection
Pulse repetition frequency
Resolution
SAR (radar)
Spaceborne radar imaging
Steering
Synthetic aperture radar
synthetic aperture radar (SAR)
title On the Processing of Very High Resolution Spaceborne SAR Data: A Chirp-Modulated Back Projection Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A59%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Processing%20of%20Very%20High%20Resolution%20Spaceborne%20SAR%20Data:%20A%20Chirp-Modulated%20Back%20Projection%20Approach&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Meng,%20Dadi&rft.date=2018-01&rft.volume=56&rft.issue=1&rft.spage=191&rft.epage=201&rft.pages=191-201&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2017.2744649&rft_dat=%3Cproquest_RIE%3E2174512457%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174512457&rft_id=info:pmid/&rft_ieee_id=8038856&rfr_iscdi=true