On the Processing of Very High Resolution Spaceborne SAR Data: A Chirp-Modulated Back Projection Approach
A new image formation algorithm is proposed for processing very high resolution spaceborne sliding-spotlight synthetic aperture radar (SAR) data. Because of along-track antenna steering, the Doppler bandwidth of the received SAR data is expanded significantly beyond one pulse repetition frequency in...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2018-01, Vol.56 (1), p.191-201 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 201 |
---|---|
container_issue | 1 |
container_start_page | 191 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 56 |
creator | Meng, Dadi Ding, Chibiao Hu, Donghui Qiu, Xiaolan Huang, Lijia Han, Bing Liu, Jiayin Xu, Ning |
description | A new image formation algorithm is proposed for processing very high resolution spaceborne sliding-spotlight synthetic aperture radar (SAR) data. Because of along-track antenna steering, the Doppler bandwidth of the received SAR data is expanded significantly beyond one pulse repetition frequency interval. Furthermore, the range histories become spatially dependent in both dimensions and cannot be expressed exactly by a hyperbolic model. In our approach, we first reduce the Doppler bandwidth by a novel azimuth dechirp processing method in the range frequency domain. The data are then processed by the standard ω-κ algorithm with a fixed effective velocity. Thereafter, the chirp modulation concept is imported to rebuild new data with much shorter apertures. Finally, a standard back-projection algorithm is employed to accumulate the signal pixel by pixel along the newly built aperture. Thus, the balance between processing efficiency and precision can be controlled by adjusting the length of the new apertures. In addition, a more accurate 2-D spectrum derivation is employed to enhance the processing precision, and a novel range-splitting method is presented to accommodate the range dependence of effective velocities. Furthermore, when implementing the back projection, the image grid-the region and granularity level of which are user defined-is placed on the earth's surface instead of on the slant-range plane, and the routine geometry projection processing thus becomes dispensable. |
doi_str_mv | 10.1109/TGRS.2017.2744649 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2017_2744649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8038856</ieee_id><sourcerecordid>2174512457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-186b7be44868c82d4268ed41fbf3b58ca40d870ebd72f0b7f0b0bb7606b23d173</originalsourceid><addsrcrecordid>eNo9kE9PwjAYxhujiYh-AOOliedh23Vt5w1R0QSDAfS6tN07GOI62-3At3cT4uHNc3n-5P0hdE3JiFKS3q2mi-WIESpHTHIueHqCBjRJVEQE56doQGgqIqZSdo4uQtgSQnlC5QCV8wo3G8Dv3lkIoazW2BX4E_wev5TrDV5AcLu2KV2Fl7W2YJyvAC_HC_yoG32Px3iyKX0dvbm83ekGcvyg7VdftwX7FxvXtXfabi7RWaF3Aa6OOkQfz0-ryUs0m09fJ-NZZFkaNxFVwkgDnCuhrGI5Z0JBzmlhitgkympOciUJmFyyghjZHTFGCiIMi3Mq4yG6PfR2sz8thCbbutZX3WTGqOy-ZjzpXfTgst6F4KHIal9-a7_PKMl6ollPNOuJZkeiXebmkCkB4N-vSKxUIuJfSv9xbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174512457</pqid></control><display><type>article</type><title>On the Processing of Very High Resolution Spaceborne SAR Data: A Chirp-Modulated Back Projection Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Meng, Dadi ; Ding, Chibiao ; Hu, Donghui ; Qiu, Xiaolan ; Huang, Lijia ; Han, Bing ; Liu, Jiayin ; Xu, Ning</creator><creatorcontrib>Meng, Dadi ; Ding, Chibiao ; Hu, Donghui ; Qiu, Xiaolan ; Huang, Lijia ; Han, Bing ; Liu, Jiayin ; Xu, Ning</creatorcontrib><description>A new image formation algorithm is proposed for processing very high resolution spaceborne sliding-spotlight synthetic aperture radar (SAR) data. Because of along-track antenna steering, the Doppler bandwidth of the received SAR data is expanded significantly beyond one pulse repetition frequency interval. Furthermore, the range histories become spatially dependent in both dimensions and cannot be expressed exactly by a hyperbolic model. In our approach, we first reduce the Doppler bandwidth by a novel azimuth dechirp processing method in the range frequency domain. The data are then processed by the standard ω-κ algorithm with a fixed effective velocity. Thereafter, the chirp modulation concept is imported to rebuild new data with much shorter apertures. Finally, a standard back-projection algorithm is employed to accumulate the signal pixel by pixel along the newly built aperture. Thus, the balance between processing efficiency and precision can be controlled by adjusting the length of the new apertures. In addition, a more accurate 2-D spectrum derivation is employed to enhance the processing precision, and a novel range-splitting method is presented to accommodate the range dependence of effective velocities. Furthermore, when implementing the back projection, the image grid-the region and granularity level of which are user defined-is placed on the earth's surface instead of on the slant-range plane, and the routine geometry projection processing thus becomes dispensable.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2017.2744649</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Apertures ; Azimuth ; Bandwidth ; Bandwidths ; Chirp ; Data ; Dependence ; Dimensions ; Doppler effect ; Doppler sonar ; Earth ; Earth surface ; Effective velocity ; High resolution ; History ; Methods ; Pixels ; Projection ; Pulse repetition frequency ; Resolution ; SAR (radar) ; Spaceborne radar imaging ; Steering ; Synthetic aperture radar ; synthetic aperture radar (SAR)</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2018-01, Vol.56 (1), p.191-201</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-186b7be44868c82d4268ed41fbf3b58ca40d870ebd72f0b7f0b0bb7606b23d173</citedby><cites>FETCH-LOGICAL-c293t-186b7be44868c82d4268ed41fbf3b58ca40d870ebd72f0b7f0b0bb7606b23d173</cites><orcidid>0000-0003-2931-6263</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8038856$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8038856$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Meng, Dadi</creatorcontrib><creatorcontrib>Ding, Chibiao</creatorcontrib><creatorcontrib>Hu, Donghui</creatorcontrib><creatorcontrib>Qiu, Xiaolan</creatorcontrib><creatorcontrib>Huang, Lijia</creatorcontrib><creatorcontrib>Han, Bing</creatorcontrib><creatorcontrib>Liu, Jiayin</creatorcontrib><creatorcontrib>Xu, Ning</creatorcontrib><title>On the Processing of Very High Resolution Spaceborne SAR Data: A Chirp-Modulated Back Projection Approach</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>A new image formation algorithm is proposed for processing very high resolution spaceborne sliding-spotlight synthetic aperture radar (SAR) data. Because of along-track antenna steering, the Doppler bandwidth of the received SAR data is expanded significantly beyond one pulse repetition frequency interval. Furthermore, the range histories become spatially dependent in both dimensions and cannot be expressed exactly by a hyperbolic model. In our approach, we first reduce the Doppler bandwidth by a novel azimuth dechirp processing method in the range frequency domain. The data are then processed by the standard ω-κ algorithm with a fixed effective velocity. Thereafter, the chirp modulation concept is imported to rebuild new data with much shorter apertures. Finally, a standard back-projection algorithm is employed to accumulate the signal pixel by pixel along the newly built aperture. Thus, the balance between processing efficiency and precision can be controlled by adjusting the length of the new apertures. In addition, a more accurate 2-D spectrum derivation is employed to enhance the processing precision, and a novel range-splitting method is presented to accommodate the range dependence of effective velocities. Furthermore, when implementing the back projection, the image grid-the region and granularity level of which are user defined-is placed on the earth's surface instead of on the slant-range plane, and the routine geometry projection processing thus becomes dispensable.</description><subject>Algorithms</subject><subject>Apertures</subject><subject>Azimuth</subject><subject>Bandwidth</subject><subject>Bandwidths</subject><subject>Chirp</subject><subject>Data</subject><subject>Dependence</subject><subject>Dimensions</subject><subject>Doppler effect</subject><subject>Doppler sonar</subject><subject>Earth</subject><subject>Earth surface</subject><subject>Effective velocity</subject><subject>High resolution</subject><subject>History</subject><subject>Methods</subject><subject>Pixels</subject><subject>Projection</subject><subject>Pulse repetition frequency</subject><subject>Resolution</subject><subject>SAR (radar)</subject><subject>Spaceborne radar imaging</subject><subject>Steering</subject><subject>Synthetic aperture radar</subject><subject>synthetic aperture radar (SAR)</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9PwjAYxhujiYh-AOOliedh23Vt5w1R0QSDAfS6tN07GOI62-3At3cT4uHNc3n-5P0hdE3JiFKS3q2mi-WIESpHTHIueHqCBjRJVEQE56doQGgqIqZSdo4uQtgSQnlC5QCV8wo3G8Dv3lkIoazW2BX4E_wev5TrDV5AcLu2KV2Fl7W2YJyvAC_HC_yoG32Px3iyKX0dvbm83ekGcvyg7VdftwX7FxvXtXfabi7RWaF3Aa6OOkQfz0-ryUs0m09fJ-NZZFkaNxFVwkgDnCuhrGI5Z0JBzmlhitgkympOciUJmFyyghjZHTFGCiIMi3Mq4yG6PfR2sz8thCbbutZX3WTGqOy-ZjzpXfTgst6F4KHIal9-a7_PKMl6ollPNOuJZkeiXebmkCkB4N-vSKxUIuJfSv9xbw</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Meng, Dadi</creator><creator>Ding, Chibiao</creator><creator>Hu, Donghui</creator><creator>Qiu, Xiaolan</creator><creator>Huang, Lijia</creator><creator>Han, Bing</creator><creator>Liu, Jiayin</creator><creator>Xu, Ning</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2931-6263</orcidid></search><sort><creationdate>201801</creationdate><title>On the Processing of Very High Resolution Spaceborne SAR Data: A Chirp-Modulated Back Projection Approach</title><author>Meng, Dadi ; Ding, Chibiao ; Hu, Donghui ; Qiu, Xiaolan ; Huang, Lijia ; Han, Bing ; Liu, Jiayin ; Xu, Ning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-186b7be44868c82d4268ed41fbf3b58ca40d870ebd72f0b7f0b0bb7606b23d173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Apertures</topic><topic>Azimuth</topic><topic>Bandwidth</topic><topic>Bandwidths</topic><topic>Chirp</topic><topic>Data</topic><topic>Dependence</topic><topic>Dimensions</topic><topic>Doppler effect</topic><topic>Doppler sonar</topic><topic>Earth</topic><topic>Earth surface</topic><topic>Effective velocity</topic><topic>High resolution</topic><topic>History</topic><topic>Methods</topic><topic>Pixels</topic><topic>Projection</topic><topic>Pulse repetition frequency</topic><topic>Resolution</topic><topic>SAR (radar)</topic><topic>Spaceborne radar imaging</topic><topic>Steering</topic><topic>Synthetic aperture radar</topic><topic>synthetic aperture radar (SAR)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Dadi</creatorcontrib><creatorcontrib>Ding, Chibiao</creatorcontrib><creatorcontrib>Hu, Donghui</creatorcontrib><creatorcontrib>Qiu, Xiaolan</creatorcontrib><creatorcontrib>Huang, Lijia</creatorcontrib><creatorcontrib>Han, Bing</creatorcontrib><creatorcontrib>Liu, Jiayin</creatorcontrib><creatorcontrib>Xu, Ning</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Meng, Dadi</au><au>Ding, Chibiao</au><au>Hu, Donghui</au><au>Qiu, Xiaolan</au><au>Huang, Lijia</au><au>Han, Bing</au><au>Liu, Jiayin</au><au>Xu, Ning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Processing of Very High Resolution Spaceborne SAR Data: A Chirp-Modulated Back Projection Approach</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2018-01</date><risdate>2018</risdate><volume>56</volume><issue>1</issue><spage>191</spage><epage>201</epage><pages>191-201</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>A new image formation algorithm is proposed for processing very high resolution spaceborne sliding-spotlight synthetic aperture radar (SAR) data. Because of along-track antenna steering, the Doppler bandwidth of the received SAR data is expanded significantly beyond one pulse repetition frequency interval. Furthermore, the range histories become spatially dependent in both dimensions and cannot be expressed exactly by a hyperbolic model. In our approach, we first reduce the Doppler bandwidth by a novel azimuth dechirp processing method in the range frequency domain. The data are then processed by the standard ω-κ algorithm with a fixed effective velocity. Thereafter, the chirp modulation concept is imported to rebuild new data with much shorter apertures. Finally, a standard back-projection algorithm is employed to accumulate the signal pixel by pixel along the newly built aperture. Thus, the balance between processing efficiency and precision can be controlled by adjusting the length of the new apertures. In addition, a more accurate 2-D spectrum derivation is employed to enhance the processing precision, and a novel range-splitting method is presented to accommodate the range dependence of effective velocities. Furthermore, when implementing the back projection, the image grid-the region and granularity level of which are user defined-is placed on the earth's surface instead of on the slant-range plane, and the routine geometry projection processing thus becomes dispensable.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2017.2744649</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2931-6263</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2018-01, Vol.56 (1), p.191-201 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TGRS_2017_2744649 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Apertures Azimuth Bandwidth Bandwidths Chirp Data Dependence Dimensions Doppler effect Doppler sonar Earth Earth surface Effective velocity High resolution History Methods Pixels Projection Pulse repetition frequency Resolution SAR (radar) Spaceborne radar imaging Steering Synthetic aperture radar synthetic aperture radar (SAR) |
title | On the Processing of Very High Resolution Spaceborne SAR Data: A Chirp-Modulated Back Projection Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A59%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Processing%20of%20Very%20High%20Resolution%20Spaceborne%20SAR%20Data:%20A%20Chirp-Modulated%20Back%20Projection%20Approach&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Meng,%20Dadi&rft.date=2018-01&rft.volume=56&rft.issue=1&rft.spage=191&rft.epage=201&rft.pages=191-201&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2017.2744649&rft_dat=%3Cproquest_RIE%3E2174512457%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174512457&rft_id=info:pmid/&rft_ieee_id=8038856&rfr_iscdi=true |