Sparse Distributed Multitemporal Hyperspectral Unmixing

Blind hyperspectral unmixing jointly estimates spectral signatures and abundances in hyperspectral images (HSIs). Hyperspectral unmixing is a powerful tool for analyzing hyperspectral data. However, the usual huge size of HSIs may raise difficulties for classical unmixing algorithms, namely, due to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2017-11, Vol.55 (11), p.6069-6084
Hauptverfasser: Sigurdsson, Jakob, Ulfarsson, Magnus O., Sveinsson, Johannes R., Bioucas-Dias, Jose M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6084
container_issue 11
container_start_page 6069
container_title IEEE transactions on geoscience and remote sensing
container_volume 55
creator Sigurdsson, Jakob
Ulfarsson, Magnus O.
Sveinsson, Johannes R.
Bioucas-Dias, Jose M.
description Blind hyperspectral unmixing jointly estimates spectral signatures and abundances in hyperspectral images (HSIs). Hyperspectral unmixing is a powerful tool for analyzing hyperspectral data. However, the usual huge size of HSIs may raise difficulties for classical unmixing algorithms, namely, due to limitations of the hardware used. Therefore, some researchers have considered distributed algorithms. In this paper, we develop a distributed hyperspectral unmixing algorithm that uses the alternating direction method of multipliers and ℓ 1 sparse regularization. The hyperspectral unmixing problem is split into a number of smaller subproblems that are individually solved, and then the solutions are combined. A key feature of the proposed algorithm is that each subproblem does not need to have access to the whole HSI. The algorithm may also be applied to multitemporal HSIs with due adaptations accounting for variability that often appears in multitemporal images. The effectiveness of the proposed algorithm is evaluated using both simulated data and real HSIs.
doi_str_mv 10.1109/TGRS.2017.2720539
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2017_2720539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7990602</ieee_id><sourcerecordid>1956425745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-8adaef356a837c7fdf5095f29555186767d18bffc6fc31f5265cb1c47fa98b353</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOKc_QHwZ-Nyam_QmzaNM3YSJ4LbnkKaJdGxrTVJw_96VDZ8uB75zLnyE3APNAah6Ws2-ljmjIHMmGUWuLsgIEMuMiqK4JCMKSmSsVOya3MS4oRQKBDkictmZEN3kpYkpNFWfXD356LepSW7XtcFsJ_ND50LsnE1DWu93zW-z_74lV95so7s73zFZv72upvNs8Tl7nz4vMstRpaw0tXGeozAll1b62iNV6JlCRCiFFLKGsvLeCm85eGQCbQW2kN6osuLIx-TxtNuF9qd3MelN24f98aUGhaJgKIuBghNlQxtjcF53odmZcNBA9eBHD3704Eef_Rw7D6dO45z756VSVFDG_wCQN2GO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1956425745</pqid></control><display><type>article</type><title>Sparse Distributed Multitemporal Hyperspectral Unmixing</title><source>IEEE Electronic Library (IEL)</source><creator>Sigurdsson, Jakob ; Ulfarsson, Magnus O. ; Sveinsson, Johannes R. ; Bioucas-Dias, Jose M.</creator><creatorcontrib>Sigurdsson, Jakob ; Ulfarsson, Magnus O. ; Sveinsson, Johannes R. ; Bioucas-Dias, Jose M.</creatorcontrib><description>Blind hyperspectral unmixing jointly estimates spectral signatures and abundances in hyperspectral images (HSIs). Hyperspectral unmixing is a powerful tool for analyzing hyperspectral data. However, the usual huge size of HSIs may raise difficulties for classical unmixing algorithms, namely, due to limitations of the hardware used. Therefore, some researchers have considered distributed algorithms. In this paper, we develop a distributed hyperspectral unmixing algorithm that uses the alternating direction method of multipliers and ℓ 1 sparse regularization. The hyperspectral unmixing problem is split into a number of smaller subproblems that are individually solved, and then the solutions are combined. A key feature of the proposed algorithm is that each subproblem does not need to have access to the whole HSI. The algorithm may also be applied to multitemporal HSIs with due adaptations accounting for variability that often appears in multitemporal images. The effectiveness of the proposed algorithm is evaluated using both simulated data and real HSIs.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2017.2720539</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation ; Algorithms ; Alternating direction method of multipliers (ADMM) ; blind signal separation ; Computer simulation ; Convex functions ; Data processing ; Distributed algorithms ; feature extraction ; Hardware ; Hyperspectral imaging ; hyperspectral unmixing ; linear unmixing ; Mathematical models ; multitemporal unmixing ; Optimization ; Regularization ; Solutions ; Spectral signatures</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2017-11, Vol.55 (11), p.6069-6084</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-8adaef356a837c7fdf5095f29555186767d18bffc6fc31f5265cb1c47fa98b353</citedby><cites>FETCH-LOGICAL-c359t-8adaef356a837c7fdf5095f29555186767d18bffc6fc31f5265cb1c47fa98b353</cites><orcidid>0000-0002-0461-040X ; 0000-0001-6309-3126</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7990602$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7990602$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sigurdsson, Jakob</creatorcontrib><creatorcontrib>Ulfarsson, Magnus O.</creatorcontrib><creatorcontrib>Sveinsson, Johannes R.</creatorcontrib><creatorcontrib>Bioucas-Dias, Jose M.</creatorcontrib><title>Sparse Distributed Multitemporal Hyperspectral Unmixing</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Blind hyperspectral unmixing jointly estimates spectral signatures and abundances in hyperspectral images (HSIs). Hyperspectral unmixing is a powerful tool for analyzing hyperspectral data. However, the usual huge size of HSIs may raise difficulties for classical unmixing algorithms, namely, due to limitations of the hardware used. Therefore, some researchers have considered distributed algorithms. In this paper, we develop a distributed hyperspectral unmixing algorithm that uses the alternating direction method of multipliers and ℓ 1 sparse regularization. The hyperspectral unmixing problem is split into a number of smaller subproblems that are individually solved, and then the solutions are combined. A key feature of the proposed algorithm is that each subproblem does not need to have access to the whole HSI. The algorithm may also be applied to multitemporal HSIs with due adaptations accounting for variability that often appears in multitemporal images. The effectiveness of the proposed algorithm is evaluated using both simulated data and real HSIs.</description><subject>Adaptation</subject><subject>Algorithms</subject><subject>Alternating direction method of multipliers (ADMM)</subject><subject>blind signal separation</subject><subject>Computer simulation</subject><subject>Convex functions</subject><subject>Data processing</subject><subject>Distributed algorithms</subject><subject>feature extraction</subject><subject>Hardware</subject><subject>Hyperspectral imaging</subject><subject>hyperspectral unmixing</subject><subject>linear unmixing</subject><subject>Mathematical models</subject><subject>multitemporal unmixing</subject><subject>Optimization</subject><subject>Regularization</subject><subject>Solutions</subject><subject>Spectral signatures</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFLwzAUhYMoOKc_QHwZ-Nyam_QmzaNM3YSJ4LbnkKaJdGxrTVJw_96VDZ8uB75zLnyE3APNAah6Ws2-ljmjIHMmGUWuLsgIEMuMiqK4JCMKSmSsVOya3MS4oRQKBDkictmZEN3kpYkpNFWfXD356LepSW7XtcFsJ_ND50LsnE1DWu93zW-z_74lV95so7s73zFZv72upvNs8Tl7nz4vMstRpaw0tXGeozAll1b62iNV6JlCRCiFFLKGsvLeCm85eGQCbQW2kN6osuLIx-TxtNuF9qd3MelN24f98aUGhaJgKIuBghNlQxtjcF53odmZcNBA9eBHD3704Eef_Rw7D6dO45z756VSVFDG_wCQN2GO</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>Sigurdsson, Jakob</creator><creator>Ulfarsson, Magnus O.</creator><creator>Sveinsson, Johannes R.</creator><creator>Bioucas-Dias, Jose M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0461-040X</orcidid><orcidid>https://orcid.org/0000-0001-6309-3126</orcidid></search><sort><creationdate>201711</creationdate><title>Sparse Distributed Multitemporal Hyperspectral Unmixing</title><author>Sigurdsson, Jakob ; Ulfarsson, Magnus O. ; Sveinsson, Johannes R. ; Bioucas-Dias, Jose M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-8adaef356a837c7fdf5095f29555186767d18bffc6fc31f5265cb1c47fa98b353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptation</topic><topic>Algorithms</topic><topic>Alternating direction method of multipliers (ADMM)</topic><topic>blind signal separation</topic><topic>Computer simulation</topic><topic>Convex functions</topic><topic>Data processing</topic><topic>Distributed algorithms</topic><topic>feature extraction</topic><topic>Hardware</topic><topic>Hyperspectral imaging</topic><topic>hyperspectral unmixing</topic><topic>linear unmixing</topic><topic>Mathematical models</topic><topic>multitemporal unmixing</topic><topic>Optimization</topic><topic>Regularization</topic><topic>Solutions</topic><topic>Spectral signatures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sigurdsson, Jakob</creatorcontrib><creatorcontrib>Ulfarsson, Magnus O.</creatorcontrib><creatorcontrib>Sveinsson, Johannes R.</creatorcontrib><creatorcontrib>Bioucas-Dias, Jose M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sigurdsson, Jakob</au><au>Ulfarsson, Magnus O.</au><au>Sveinsson, Johannes R.</au><au>Bioucas-Dias, Jose M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sparse Distributed Multitemporal Hyperspectral Unmixing</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2017-11</date><risdate>2017</risdate><volume>55</volume><issue>11</issue><spage>6069</spage><epage>6084</epage><pages>6069-6084</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Blind hyperspectral unmixing jointly estimates spectral signatures and abundances in hyperspectral images (HSIs). Hyperspectral unmixing is a powerful tool for analyzing hyperspectral data. However, the usual huge size of HSIs may raise difficulties for classical unmixing algorithms, namely, due to limitations of the hardware used. Therefore, some researchers have considered distributed algorithms. In this paper, we develop a distributed hyperspectral unmixing algorithm that uses the alternating direction method of multipliers and ℓ 1 sparse regularization. The hyperspectral unmixing problem is split into a number of smaller subproblems that are individually solved, and then the solutions are combined. A key feature of the proposed algorithm is that each subproblem does not need to have access to the whole HSI. The algorithm may also be applied to multitemporal HSIs with due adaptations accounting for variability that often appears in multitemporal images. The effectiveness of the proposed algorithm is evaluated using both simulated data and real HSIs.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2017.2720539</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0461-040X</orcidid><orcidid>https://orcid.org/0000-0001-6309-3126</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2017-11, Vol.55 (11), p.6069-6084
issn 0196-2892
1558-0644
language eng
recordid cdi_crossref_primary_10_1109_TGRS_2017_2720539
source IEEE Electronic Library (IEL)
subjects Adaptation
Algorithms
Alternating direction method of multipliers (ADMM)
blind signal separation
Computer simulation
Convex functions
Data processing
Distributed algorithms
feature extraction
Hardware
Hyperspectral imaging
hyperspectral unmixing
linear unmixing
Mathematical models
multitemporal unmixing
Optimization
Regularization
Solutions
Spectral signatures
title Sparse Distributed Multitemporal Hyperspectral Unmixing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T15%3A53%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sparse%20Distributed%20Multitemporal%20Hyperspectral%20Unmixing&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Sigurdsson,%20Jakob&rft.date=2017-11&rft.volume=55&rft.issue=11&rft.spage=6069&rft.epage=6084&rft.pages=6069-6084&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2017.2720539&rft_dat=%3Cproquest_RIE%3E1956425745%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1956425745&rft_id=info:pmid/&rft_ieee_id=7990602&rfr_iscdi=true