Sparse Distributed Multitemporal Hyperspectral Unmixing
Blind hyperspectral unmixing jointly estimates spectral signatures and abundances in hyperspectral images (HSIs). Hyperspectral unmixing is a powerful tool for analyzing hyperspectral data. However, the usual huge size of HSIs may raise difficulties for classical unmixing algorithms, namely, due to...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2017-11, Vol.55 (11), p.6069-6084 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6084 |
---|---|
container_issue | 11 |
container_start_page | 6069 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 55 |
creator | Sigurdsson, Jakob Ulfarsson, Magnus O. Sveinsson, Johannes R. Bioucas-Dias, Jose M. |
description | Blind hyperspectral unmixing jointly estimates spectral signatures and abundances in hyperspectral images (HSIs). Hyperspectral unmixing is a powerful tool for analyzing hyperspectral data. However, the usual huge size of HSIs may raise difficulties for classical unmixing algorithms, namely, due to limitations of the hardware used. Therefore, some researchers have considered distributed algorithms. In this paper, we develop a distributed hyperspectral unmixing algorithm that uses the alternating direction method of multipliers and ℓ 1 sparse regularization. The hyperspectral unmixing problem is split into a number of smaller subproblems that are individually solved, and then the solutions are combined. A key feature of the proposed algorithm is that each subproblem does not need to have access to the whole HSI. The algorithm may also be applied to multitemporal HSIs with due adaptations accounting for variability that often appears in multitemporal images. The effectiveness of the proposed algorithm is evaluated using both simulated data and real HSIs. |
doi_str_mv | 10.1109/TGRS.2017.2720539 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2017_2720539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7990602</ieee_id><sourcerecordid>1956425745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-8adaef356a837c7fdf5095f29555186767d18bffc6fc31f5265cb1c47fa98b353</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOKc_QHwZ-Nyam_QmzaNM3YSJ4LbnkKaJdGxrTVJw_96VDZ8uB75zLnyE3APNAah6Ws2-ljmjIHMmGUWuLsgIEMuMiqK4JCMKSmSsVOya3MS4oRQKBDkictmZEN3kpYkpNFWfXD356LepSW7XtcFsJ_ND50LsnE1DWu93zW-z_74lV95so7s73zFZv72upvNs8Tl7nz4vMstRpaw0tXGeozAll1b62iNV6JlCRCiFFLKGsvLeCm85eGQCbQW2kN6osuLIx-TxtNuF9qd3MelN24f98aUGhaJgKIuBghNlQxtjcF53odmZcNBA9eBHD3704Eef_Rw7D6dO45z756VSVFDG_wCQN2GO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1956425745</pqid></control><display><type>article</type><title>Sparse Distributed Multitemporal Hyperspectral Unmixing</title><source>IEEE Electronic Library (IEL)</source><creator>Sigurdsson, Jakob ; Ulfarsson, Magnus O. ; Sveinsson, Johannes R. ; Bioucas-Dias, Jose M.</creator><creatorcontrib>Sigurdsson, Jakob ; Ulfarsson, Magnus O. ; Sveinsson, Johannes R. ; Bioucas-Dias, Jose M.</creatorcontrib><description>Blind hyperspectral unmixing jointly estimates spectral signatures and abundances in hyperspectral images (HSIs). Hyperspectral unmixing is a powerful tool for analyzing hyperspectral data. However, the usual huge size of HSIs may raise difficulties for classical unmixing algorithms, namely, due to limitations of the hardware used. Therefore, some researchers have considered distributed algorithms. In this paper, we develop a distributed hyperspectral unmixing algorithm that uses the alternating direction method of multipliers and ℓ 1 sparse regularization. The hyperspectral unmixing problem is split into a number of smaller subproblems that are individually solved, and then the solutions are combined. A key feature of the proposed algorithm is that each subproblem does not need to have access to the whole HSI. The algorithm may also be applied to multitemporal HSIs with due adaptations accounting for variability that often appears in multitemporal images. The effectiveness of the proposed algorithm is evaluated using both simulated data and real HSIs.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2017.2720539</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation ; Algorithms ; Alternating direction method of multipliers (ADMM) ; blind signal separation ; Computer simulation ; Convex functions ; Data processing ; Distributed algorithms ; feature extraction ; Hardware ; Hyperspectral imaging ; hyperspectral unmixing ; linear unmixing ; Mathematical models ; multitemporal unmixing ; Optimization ; Regularization ; Solutions ; Spectral signatures</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2017-11, Vol.55 (11), p.6069-6084</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-8adaef356a837c7fdf5095f29555186767d18bffc6fc31f5265cb1c47fa98b353</citedby><cites>FETCH-LOGICAL-c359t-8adaef356a837c7fdf5095f29555186767d18bffc6fc31f5265cb1c47fa98b353</cites><orcidid>0000-0002-0461-040X ; 0000-0001-6309-3126</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7990602$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7990602$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sigurdsson, Jakob</creatorcontrib><creatorcontrib>Ulfarsson, Magnus O.</creatorcontrib><creatorcontrib>Sveinsson, Johannes R.</creatorcontrib><creatorcontrib>Bioucas-Dias, Jose M.</creatorcontrib><title>Sparse Distributed Multitemporal Hyperspectral Unmixing</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Blind hyperspectral unmixing jointly estimates spectral signatures and abundances in hyperspectral images (HSIs). Hyperspectral unmixing is a powerful tool for analyzing hyperspectral data. However, the usual huge size of HSIs may raise difficulties for classical unmixing algorithms, namely, due to limitations of the hardware used. Therefore, some researchers have considered distributed algorithms. In this paper, we develop a distributed hyperspectral unmixing algorithm that uses the alternating direction method of multipliers and ℓ 1 sparse regularization. The hyperspectral unmixing problem is split into a number of smaller subproblems that are individually solved, and then the solutions are combined. A key feature of the proposed algorithm is that each subproblem does not need to have access to the whole HSI. The algorithm may also be applied to multitemporal HSIs with due adaptations accounting for variability that often appears in multitemporal images. The effectiveness of the proposed algorithm is evaluated using both simulated data and real HSIs.</description><subject>Adaptation</subject><subject>Algorithms</subject><subject>Alternating direction method of multipliers (ADMM)</subject><subject>blind signal separation</subject><subject>Computer simulation</subject><subject>Convex functions</subject><subject>Data processing</subject><subject>Distributed algorithms</subject><subject>feature extraction</subject><subject>Hardware</subject><subject>Hyperspectral imaging</subject><subject>hyperspectral unmixing</subject><subject>linear unmixing</subject><subject>Mathematical models</subject><subject>multitemporal unmixing</subject><subject>Optimization</subject><subject>Regularization</subject><subject>Solutions</subject><subject>Spectral signatures</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFLwzAUhYMoOKc_QHwZ-Nyam_QmzaNM3YSJ4LbnkKaJdGxrTVJw_96VDZ8uB75zLnyE3APNAah6Ws2-ljmjIHMmGUWuLsgIEMuMiqK4JCMKSmSsVOya3MS4oRQKBDkictmZEN3kpYkpNFWfXD356LepSW7XtcFsJ_ND50LsnE1DWu93zW-z_74lV95so7s73zFZv72upvNs8Tl7nz4vMstRpaw0tXGeozAll1b62iNV6JlCRCiFFLKGsvLeCm85eGQCbQW2kN6osuLIx-TxtNuF9qd3MelN24f98aUGhaJgKIuBghNlQxtjcF53odmZcNBA9eBHD3704Eef_Rw7D6dO45z756VSVFDG_wCQN2GO</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>Sigurdsson, Jakob</creator><creator>Ulfarsson, Magnus O.</creator><creator>Sveinsson, Johannes R.</creator><creator>Bioucas-Dias, Jose M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0461-040X</orcidid><orcidid>https://orcid.org/0000-0001-6309-3126</orcidid></search><sort><creationdate>201711</creationdate><title>Sparse Distributed Multitemporal Hyperspectral Unmixing</title><author>Sigurdsson, Jakob ; Ulfarsson, Magnus O. ; Sveinsson, Johannes R. ; Bioucas-Dias, Jose M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-8adaef356a837c7fdf5095f29555186767d18bffc6fc31f5265cb1c47fa98b353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptation</topic><topic>Algorithms</topic><topic>Alternating direction method of multipliers (ADMM)</topic><topic>blind signal separation</topic><topic>Computer simulation</topic><topic>Convex functions</topic><topic>Data processing</topic><topic>Distributed algorithms</topic><topic>feature extraction</topic><topic>Hardware</topic><topic>Hyperspectral imaging</topic><topic>hyperspectral unmixing</topic><topic>linear unmixing</topic><topic>Mathematical models</topic><topic>multitemporal unmixing</topic><topic>Optimization</topic><topic>Regularization</topic><topic>Solutions</topic><topic>Spectral signatures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sigurdsson, Jakob</creatorcontrib><creatorcontrib>Ulfarsson, Magnus O.</creatorcontrib><creatorcontrib>Sveinsson, Johannes R.</creatorcontrib><creatorcontrib>Bioucas-Dias, Jose M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sigurdsson, Jakob</au><au>Ulfarsson, Magnus O.</au><au>Sveinsson, Johannes R.</au><au>Bioucas-Dias, Jose M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sparse Distributed Multitemporal Hyperspectral Unmixing</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2017-11</date><risdate>2017</risdate><volume>55</volume><issue>11</issue><spage>6069</spage><epage>6084</epage><pages>6069-6084</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Blind hyperspectral unmixing jointly estimates spectral signatures and abundances in hyperspectral images (HSIs). Hyperspectral unmixing is a powerful tool for analyzing hyperspectral data. However, the usual huge size of HSIs may raise difficulties for classical unmixing algorithms, namely, due to limitations of the hardware used. Therefore, some researchers have considered distributed algorithms. In this paper, we develop a distributed hyperspectral unmixing algorithm that uses the alternating direction method of multipliers and ℓ 1 sparse regularization. The hyperspectral unmixing problem is split into a number of smaller subproblems that are individually solved, and then the solutions are combined. A key feature of the proposed algorithm is that each subproblem does not need to have access to the whole HSI. The algorithm may also be applied to multitemporal HSIs with due adaptations accounting for variability that often appears in multitemporal images. The effectiveness of the proposed algorithm is evaluated using both simulated data and real HSIs.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2017.2720539</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0461-040X</orcidid><orcidid>https://orcid.org/0000-0001-6309-3126</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2017-11, Vol.55 (11), p.6069-6084 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TGRS_2017_2720539 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation Algorithms Alternating direction method of multipliers (ADMM) blind signal separation Computer simulation Convex functions Data processing Distributed algorithms feature extraction Hardware Hyperspectral imaging hyperspectral unmixing linear unmixing Mathematical models multitemporal unmixing Optimization Regularization Solutions Spectral signatures |
title | Sparse Distributed Multitemporal Hyperspectral Unmixing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T15%3A53%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sparse%20Distributed%20Multitemporal%20Hyperspectral%20Unmixing&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Sigurdsson,%20Jakob&rft.date=2017-11&rft.volume=55&rft.issue=11&rft.spage=6069&rft.epage=6084&rft.pages=6069-6084&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2017.2720539&rft_dat=%3Cproquest_RIE%3E1956425745%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1956425745&rft_id=info:pmid/&rft_ieee_id=7990602&rfr_iscdi=true |