Automatic Orthorectification of High-Resolution Optical Satellite Images Using Vector Roads
This paper presents a completely automatic processing chain for orthorectification of optical pushbroom sensors. The procedure is robust and works without manual intervention from raw satellite image to orthoimage. It is modularly divided in four main steps: metadata extraction, automatic ground con...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2015-11, Vol.53 (11), p.6035-6047 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6047 |
---|---|
container_issue | 11 |
container_start_page | 6035 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 53 |
creator | Marsetic, Ales Ostir, Kristof Fras, Mojca Kosmatin |
description | This paper presents a completely automatic processing chain for orthorectification of optical pushbroom sensors. The procedure is robust and works without manual intervention from raw satellite image to orthoimage. It is modularly divided in four main steps: metadata extraction, automatic ground control point (GCP) extraction, geometric modeling, and orthorectification. The GCP extraction step uses georeferenced vector roads as a reference and produces a file with a list of points and their accuracy estimation. The physical geometric model is based on collinearity equations and works with sensor-corrected (level 1) optical satellite images. It models the sensor position and attitude with second-order piecewise polynomials depending on the acquisition time. The exterior orientation parameters are estimated in a least squares adjustment, employing random sample consensus and robust estimation algorithms for the removal of erroneous points and fine-tuning of the results. The images are finally orthorectified using a digital elevation model and positioned in a national coordinate system. The usability of the method is presented by testing three RapidEye images of regions with different terrain configurations. Several tests were carried out to verify the efficiency of the procedure and to make it more robust. Using the geometric model, subpixel accuracy on independent check points was achieved, and positional accuracy of orthoimages was around one pixel. The proposed procedure is general and can be easily adapted to various sensors. |
doi_str_mv | 10.1109/TGRS.2015.2431434 |
format | Article |
fullrecord | <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2015_2431434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7115950</ieee_id><sourcerecordid>10_1109_TGRS_2015_2431434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-95b3a6df558417e5ddac27640e2afba0bf1d6f06a44e438d83637d2d3766c16d3</originalsourceid><addsrcrecordid>eNo9kMtqAjEUhkNpodb2AUo3eYGxObnNzFKkVUEQvHTTxRBz0ZTRSBIXffuOF7o68PN_P4cPoVcgAwBSv6_Gi-WAEhADyhlwxu9QD4SoCiI5v0c9ArUsaFXTR_SU0g8hwAWUPfQ9POWwV9lrPI95F6LV2TuvuyQccHB44re7YmFTaE-XaH7suqrFS5Vt2_ps8XSvtjbhdfKHLf7q-BDxIiiTntGDU22yL7fbR-vPj9VoUszm4-loOCs051UuarFhShrXfcuhtMIYpWkpObFUuY0iGwdGOiIV55azylRMstJQw0opNUjD-giuuzqGlKJ1zTH6vYq_DZDmbKc522nOdpqbnY55uzLeWvvfLwFELQj7A4N1YlI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Automatic Orthorectification of High-Resolution Optical Satellite Images Using Vector Roads</title><source>IEEE Electronic Library (IEL)</source><creator>Marsetic, Ales ; Ostir, Kristof ; Fras, Mojca Kosmatin</creator><creatorcontrib>Marsetic, Ales ; Ostir, Kristof ; Fras, Mojca Kosmatin</creatorcontrib><description>This paper presents a completely automatic processing chain for orthorectification of optical pushbroom sensors. The procedure is robust and works without manual intervention from raw satellite image to orthoimage. It is modularly divided in four main steps: metadata extraction, automatic ground control point (GCP) extraction, geometric modeling, and orthorectification. The GCP extraction step uses georeferenced vector roads as a reference and produces a file with a list of points and their accuracy estimation. The physical geometric model is based on collinearity equations and works with sensor-corrected (level 1) optical satellite images. It models the sensor position and attitude with second-order piecewise polynomials depending on the acquisition time. The exterior orientation parameters are estimated in a least squares adjustment, employing random sample consensus and robust estimation algorithms for the removal of erroneous points and fine-tuning of the results. The images are finally orthorectified using a digital elevation model and positioned in a national coordinate system. The usability of the method is presented by testing three RapidEye images of regions with different terrain configurations. Several tests were carried out to verify the efficiency of the procedure and to make it more robust. Using the geometric model, subpixel accuracy on independent check points was achieved, and positional accuracy of orthoimages was around one pixel. The proposed procedure is general and can be easily adapted to various sensors.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2015.2431434</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Automatic orthorectification ; Data mining ; general physical geometric model ; ground control point (GCP) extraction ; Mathematical model ; optical imagery ; Optical sensors ; random sample consensus (RANSAC) ; RapidEye ; Roads ; robust estimation ; Satellites</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2015-11, Vol.53 (11), p.6035-6047</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-95b3a6df558417e5ddac27640e2afba0bf1d6f06a44e438d83637d2d3766c16d3</citedby><cites>FETCH-LOGICAL-c448t-95b3a6df558417e5ddac27640e2afba0bf1d6f06a44e438d83637d2d3766c16d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7115950$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Marsetic, Ales</creatorcontrib><creatorcontrib>Ostir, Kristof</creatorcontrib><creatorcontrib>Fras, Mojca Kosmatin</creatorcontrib><title>Automatic Orthorectification of High-Resolution Optical Satellite Images Using Vector Roads</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>This paper presents a completely automatic processing chain for orthorectification of optical pushbroom sensors. The procedure is robust and works without manual intervention from raw satellite image to orthoimage. It is modularly divided in four main steps: metadata extraction, automatic ground control point (GCP) extraction, geometric modeling, and orthorectification. The GCP extraction step uses georeferenced vector roads as a reference and produces a file with a list of points and their accuracy estimation. The physical geometric model is based on collinearity equations and works with sensor-corrected (level 1) optical satellite images. It models the sensor position and attitude with second-order piecewise polynomials depending on the acquisition time. The exterior orientation parameters are estimated in a least squares adjustment, employing random sample consensus and robust estimation algorithms for the removal of erroneous points and fine-tuning of the results. The images are finally orthorectified using a digital elevation model and positioned in a national coordinate system. The usability of the method is presented by testing three RapidEye images of regions with different terrain configurations. Several tests were carried out to verify the efficiency of the procedure and to make it more robust. Using the geometric model, subpixel accuracy on independent check points was achieved, and positional accuracy of orthoimages was around one pixel. The proposed procedure is general and can be easily adapted to various sensors.</description><subject>Accuracy</subject><subject>Automatic orthorectification</subject><subject>Data mining</subject><subject>general physical geometric model</subject><subject>ground control point (GCP) extraction</subject><subject>Mathematical model</subject><subject>optical imagery</subject><subject>Optical sensors</subject><subject>random sample consensus (RANSAC)</subject><subject>RapidEye</subject><subject>Roads</subject><subject>robust estimation</subject><subject>Satellites</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kMtqAjEUhkNpodb2AUo3eYGxObnNzFKkVUEQvHTTxRBz0ZTRSBIXffuOF7o68PN_P4cPoVcgAwBSv6_Gi-WAEhADyhlwxu9QD4SoCiI5v0c9ArUsaFXTR_SU0g8hwAWUPfQ9POWwV9lrPI95F6LV2TuvuyQccHB44re7YmFTaE-XaH7suqrFS5Vt2_ps8XSvtjbhdfKHLf7q-BDxIiiTntGDU22yL7fbR-vPj9VoUszm4-loOCs051UuarFhShrXfcuhtMIYpWkpObFUuY0iGwdGOiIV55azylRMstJQw0opNUjD-giuuzqGlKJ1zTH6vYq_DZDmbKc522nOdpqbnY55uzLeWvvfLwFELQj7A4N1YlI</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Marsetic, Ales</creator><creator>Ostir, Kristof</creator><creator>Fras, Mojca Kosmatin</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20151101</creationdate><title>Automatic Orthorectification of High-Resolution Optical Satellite Images Using Vector Roads</title><author>Marsetic, Ales ; Ostir, Kristof ; Fras, Mojca Kosmatin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-95b3a6df558417e5ddac27640e2afba0bf1d6f06a44e438d83637d2d3766c16d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Accuracy</topic><topic>Automatic orthorectification</topic><topic>Data mining</topic><topic>general physical geometric model</topic><topic>ground control point (GCP) extraction</topic><topic>Mathematical model</topic><topic>optical imagery</topic><topic>Optical sensors</topic><topic>random sample consensus (RANSAC)</topic><topic>RapidEye</topic><topic>Roads</topic><topic>robust estimation</topic><topic>Satellites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marsetic, Ales</creatorcontrib><creatorcontrib>Ostir, Kristof</creatorcontrib><creatorcontrib>Fras, Mojca Kosmatin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marsetic, Ales</au><au>Ostir, Kristof</au><au>Fras, Mojca Kosmatin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic Orthorectification of High-Resolution Optical Satellite Images Using Vector Roads</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2015-11-01</date><risdate>2015</risdate><volume>53</volume><issue>11</issue><spage>6035</spage><epage>6047</epage><pages>6035-6047</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>This paper presents a completely automatic processing chain for orthorectification of optical pushbroom sensors. The procedure is robust and works without manual intervention from raw satellite image to orthoimage. It is modularly divided in four main steps: metadata extraction, automatic ground control point (GCP) extraction, geometric modeling, and orthorectification. The GCP extraction step uses georeferenced vector roads as a reference and produces a file with a list of points and their accuracy estimation. The physical geometric model is based on collinearity equations and works with sensor-corrected (level 1) optical satellite images. It models the sensor position and attitude with second-order piecewise polynomials depending on the acquisition time. The exterior orientation parameters are estimated in a least squares adjustment, employing random sample consensus and robust estimation algorithms for the removal of erroneous points and fine-tuning of the results. The images are finally orthorectified using a digital elevation model and positioned in a national coordinate system. The usability of the method is presented by testing three RapidEye images of regions with different terrain configurations. Several tests were carried out to verify the efficiency of the procedure and to make it more robust. Using the geometric model, subpixel accuracy on independent check points was achieved, and positional accuracy of orthoimages was around one pixel. The proposed procedure is general and can be easily adapted to various sensors.</abstract><pub>IEEE</pub><doi>10.1109/TGRS.2015.2431434</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2015-11, Vol.53 (11), p.6035-6047 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TGRS_2015_2431434 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Automatic orthorectification Data mining general physical geometric model ground control point (GCP) extraction Mathematical model optical imagery Optical sensors random sample consensus (RANSAC) RapidEye Roads robust estimation Satellites |
title | Automatic Orthorectification of High-Resolution Optical Satellite Images Using Vector Roads |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T09%3A29%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20Orthorectification%20of%20High-Resolution%20Optical%20Satellite%20Images%20Using%20Vector%20Roads&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Marsetic,%20Ales&rft.date=2015-11-01&rft.volume=53&rft.issue=11&rft.spage=6035&rft.epage=6047&rft.pages=6035-6047&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2015.2431434&rft_dat=%3Ccrossref_ieee_%3E10_1109_TGRS_2015_2431434%3C/crossref_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7115950&rfr_iscdi=true |