Subspace-Based Technique for Speckle Noise Reduction in SAR Images

Image-subspace-based approach for speckle noise removal from synthetic aperture radar (SAR) images is proposed. The underlying principle is to apply homomorphic framework in order to convert multiplicative speckle noise into additive and then to decompose the vector space of the noisy image into sig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2014-10, Vol.52 (10), p.6257-6271
Hauptverfasser: Yahya, Norashikin, Kamel, Nidal S., Malik, Aamir Saeed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6271
container_issue 10
container_start_page 6257
container_title IEEE transactions on geoscience and remote sensing
container_volume 52
creator Yahya, Norashikin
Kamel, Nidal S.
Malik, Aamir Saeed
description Image-subspace-based approach for speckle noise removal from synthetic aperture radar (SAR) images is proposed. The underlying principle is to apply homomorphic framework in order to convert multiplicative speckle noise into additive and then to decompose the vector space of the noisy image into signal and noise subspaces. Enhancement is performed by nulling the noise subspace and estimating the clean image from the remaining signal subspace. Linear estimator minimizing image distortion while maintaining the residual noise energy below some given threshold is used to estimate the clean image. Experiments are carried out using synthetically generated data set with controlled statistics and real SAR image of Selangor area in Malaysia. The performance of the proposed technique is compared with Lee and homomorphic wavelet in terms of noise variance reduction and preservation of radiometric edges. The results indicate moderate noise reduction by the proposed filter in comparison to Lee but with a significantly less blurry effect and a comparable performance in terms of noise reduction to wavelet but with less artifacts. The results also show better preservation of edges, texture, and point targets by the proposed filter than both Lee and wavelet and less required computational time.
doi_str_mv 10.1109/TGRS.2013.2295824
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2013_2295824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6717020</ieee_id><sourcerecordid>3377783241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-48c24dbb74eeda548d9fe6918a6ba231ca478e6abcc04ce85f929c22780d566e3</originalsourceid><addsrcrecordid>eNpdkLFOwzAURS0EEqXwAYjFEgtLip9jO_bYVlAqVSA1ZbYc5wVS0iTEzcDfk6oVA9Ndzr26OoTcApsAMPO4WazTCWcQTzg3UnNxRkYgpY6YEuKcjBgYFXFt-CW5CmHLGAgJyYjM0j4LrfMYzVzAnG7Qf9bld4-0aDqatui_KqSvTRmQrjHv_b5salrWNJ2u6XLnPjBck4vCVQFvTjkm789Pm_lLtHpbLOfTVeRjrvaR0J6LPMsSgZg7KXRuClQGtFOZ4zF4JxKNymXeM-FRy8Jw4zlPNMulUhiPycNxt-2a4WDY210ZPFaVq7HpgwWljDYShB7Q-3_otum7enhnQQppjFbABgqOlO-aEDosbNuVO9f9WGD2YNUerNqDVXuyOnTujp0SEf94lUDCOIt_AXLkccA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1545998610</pqid></control><display><type>article</type><title>Subspace-Based Technique for Speckle Noise Reduction in SAR Images</title><source>IEEE Electronic Library (IEL)</source><creator>Yahya, Norashikin ; Kamel, Nidal S. ; Malik, Aamir Saeed</creator><creatorcontrib>Yahya, Norashikin ; Kamel, Nidal S. ; Malik, Aamir Saeed</creatorcontrib><description>Image-subspace-based approach for speckle noise removal from synthetic aperture radar (SAR) images is proposed. The underlying principle is to apply homomorphic framework in order to convert multiplicative speckle noise into additive and then to decompose the vector space of the noisy image into signal and noise subspaces. Enhancement is performed by nulling the noise subspace and estimating the clean image from the remaining signal subspace. Linear estimator minimizing image distortion while maintaining the residual noise energy below some given threshold is used to estimate the clean image. Experiments are carried out using synthetically generated data set with controlled statistics and real SAR image of Selangor area in Malaysia. The performance of the proposed technique is compared with Lee and homomorphic wavelet in terms of noise variance reduction and preservation of radiometric edges. The results indicate moderate noise reduction by the proposed filter in comparison to Lee but with a significantly less blurry effect and a comparable performance in terms of noise reduction to wavelet but with less artifacts. The results also show better preservation of edges, texture, and point targets by the proposed filter than both Lee and wavelet and less required computational time.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2013.2295824</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Eigenvalues and eigenfunctions ; Image denoising ; Noise ; Noise measurement ; Noise reduction ; Preservation ; principal component analysis (PCA) ; Radar ; spatial filters ; Speckle ; stochastic processes ; Subspaces ; Synthetic aperture radar ; synthetic aperture radar (SAR) ; Texture ; Vectors ; Wavelet</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2014-10, Vol.52 (10), p.6257-6271</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-48c24dbb74eeda548d9fe6918a6ba231ca478e6abcc04ce85f929c22780d566e3</citedby><cites>FETCH-LOGICAL-c326t-48c24dbb74eeda548d9fe6918a6ba231ca478e6abcc04ce85f929c22780d566e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6717020$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6717020$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yahya, Norashikin</creatorcontrib><creatorcontrib>Kamel, Nidal S.</creatorcontrib><creatorcontrib>Malik, Aamir Saeed</creatorcontrib><title>Subspace-Based Technique for Speckle Noise Reduction in SAR Images</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Image-subspace-based approach for speckle noise removal from synthetic aperture radar (SAR) images is proposed. The underlying principle is to apply homomorphic framework in order to convert multiplicative speckle noise into additive and then to decompose the vector space of the noisy image into signal and noise subspaces. Enhancement is performed by nulling the noise subspace and estimating the clean image from the remaining signal subspace. Linear estimator minimizing image distortion while maintaining the residual noise energy below some given threshold is used to estimate the clean image. Experiments are carried out using synthetically generated data set with controlled statistics and real SAR image of Selangor area in Malaysia. The performance of the proposed technique is compared with Lee and homomorphic wavelet in terms of noise variance reduction and preservation of radiometric edges. The results indicate moderate noise reduction by the proposed filter in comparison to Lee but with a significantly less blurry effect and a comparable performance in terms of noise reduction to wavelet but with less artifacts. The results also show better preservation of edges, texture, and point targets by the proposed filter than both Lee and wavelet and less required computational time.</description><subject>Algorithms</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Image denoising</subject><subject>Noise</subject><subject>Noise measurement</subject><subject>Noise reduction</subject><subject>Preservation</subject><subject>principal component analysis (PCA)</subject><subject>Radar</subject><subject>spatial filters</subject><subject>Speckle</subject><subject>stochastic processes</subject><subject>Subspaces</subject><subject>Synthetic aperture radar</subject><subject>synthetic aperture radar (SAR)</subject><subject>Texture</subject><subject>Vectors</subject><subject>Wavelet</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkLFOwzAURS0EEqXwAYjFEgtLip9jO_bYVlAqVSA1ZbYc5wVS0iTEzcDfk6oVA9Ndzr26OoTcApsAMPO4WazTCWcQTzg3UnNxRkYgpY6YEuKcjBgYFXFt-CW5CmHLGAgJyYjM0j4LrfMYzVzAnG7Qf9bld4-0aDqatui_KqSvTRmQrjHv_b5salrWNJ2u6XLnPjBck4vCVQFvTjkm789Pm_lLtHpbLOfTVeRjrvaR0J6LPMsSgZg7KXRuClQGtFOZ4zF4JxKNymXeM-FRy8Jw4zlPNMulUhiPycNxt-2a4WDY210ZPFaVq7HpgwWljDYShB7Q-3_otum7enhnQQppjFbABgqOlO-aEDosbNuVO9f9WGD2YNUerNqDVXuyOnTujp0SEf94lUDCOIt_AXLkccA</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Yahya, Norashikin</creator><creator>Kamel, Nidal S.</creator><creator>Malik, Aamir Saeed</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7SP</scope><scope>F28</scope></search><sort><creationdate>20141001</creationdate><title>Subspace-Based Technique for Speckle Noise Reduction in SAR Images</title><author>Yahya, Norashikin ; Kamel, Nidal S. ; Malik, Aamir Saeed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-48c24dbb74eeda548d9fe6918a6ba231ca478e6abcc04ce85f929c22780d566e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Image denoising</topic><topic>Noise</topic><topic>Noise measurement</topic><topic>Noise reduction</topic><topic>Preservation</topic><topic>principal component analysis (PCA)</topic><topic>Radar</topic><topic>spatial filters</topic><topic>Speckle</topic><topic>stochastic processes</topic><topic>Subspaces</topic><topic>Synthetic aperture radar</topic><topic>synthetic aperture radar (SAR)</topic><topic>Texture</topic><topic>Vectors</topic><topic>Wavelet</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yahya, Norashikin</creatorcontrib><creatorcontrib>Kamel, Nidal S.</creatorcontrib><creatorcontrib>Malik, Aamir Saeed</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yahya, Norashikin</au><au>Kamel, Nidal S.</au><au>Malik, Aamir Saeed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subspace-Based Technique for Speckle Noise Reduction in SAR Images</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2014-10-01</date><risdate>2014</risdate><volume>52</volume><issue>10</issue><spage>6257</spage><epage>6271</epage><pages>6257-6271</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Image-subspace-based approach for speckle noise removal from synthetic aperture radar (SAR) images is proposed. The underlying principle is to apply homomorphic framework in order to convert multiplicative speckle noise into additive and then to decompose the vector space of the noisy image into signal and noise subspaces. Enhancement is performed by nulling the noise subspace and estimating the clean image from the remaining signal subspace. Linear estimator minimizing image distortion while maintaining the residual noise energy below some given threshold is used to estimate the clean image. Experiments are carried out using synthetically generated data set with controlled statistics and real SAR image of Selangor area in Malaysia. The performance of the proposed technique is compared with Lee and homomorphic wavelet in terms of noise variance reduction and preservation of radiometric edges. The results indicate moderate noise reduction by the proposed filter in comparison to Lee but with a significantly less blurry effect and a comparable performance in terms of noise reduction to wavelet but with less artifacts. The results also show better preservation of edges, texture, and point targets by the proposed filter than both Lee and wavelet and less required computational time.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2013.2295824</doi><tpages>15</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2014-10, Vol.52 (10), p.6257-6271
issn 0196-2892
1558-0644
language eng
recordid cdi_crossref_primary_10_1109_TGRS_2013_2295824
source IEEE Electronic Library (IEL)
subjects Algorithms
Eigenvalues and eigenfunctions
Image denoising
Noise
Noise measurement
Noise reduction
Preservation
principal component analysis (PCA)
Radar
spatial filters
Speckle
stochastic processes
Subspaces
Synthetic aperture radar
synthetic aperture radar (SAR)
Texture
Vectors
Wavelet
title Subspace-Based Technique for Speckle Noise Reduction in SAR Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T02%3A24%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subspace-Based%20Technique%20for%20Speckle%20Noise%20Reduction%20in%20SAR%20Images&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Yahya,%20Norashikin&rft.date=2014-10-01&rft.volume=52&rft.issue=10&rft.spage=6257&rft.epage=6271&rft.pages=6257-6271&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2013.2295824&rft_dat=%3Cproquest_RIE%3E3377783241%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1545998610&rft_id=info:pmid/&rft_ieee_id=6717020&rfr_iscdi=true