Subspace-Based Technique for Speckle Noise Reduction in SAR Images
Image-subspace-based approach for speckle noise removal from synthetic aperture radar (SAR) images is proposed. The underlying principle is to apply homomorphic framework in order to convert multiplicative speckle noise into additive and then to decompose the vector space of the noisy image into sig...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2014-10, Vol.52 (10), p.6257-6271 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6271 |
---|---|
container_issue | 10 |
container_start_page | 6257 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 52 |
creator | Yahya, Norashikin Kamel, Nidal S. Malik, Aamir Saeed |
description | Image-subspace-based approach for speckle noise removal from synthetic aperture radar (SAR) images is proposed. The underlying principle is to apply homomorphic framework in order to convert multiplicative speckle noise into additive and then to decompose the vector space of the noisy image into signal and noise subspaces. Enhancement is performed by nulling the noise subspace and estimating the clean image from the remaining signal subspace. Linear estimator minimizing image distortion while maintaining the residual noise energy below some given threshold is used to estimate the clean image. Experiments are carried out using synthetically generated data set with controlled statistics and real SAR image of Selangor area in Malaysia. The performance of the proposed technique is compared with Lee and homomorphic wavelet in terms of noise variance reduction and preservation of radiometric edges. The results indicate moderate noise reduction by the proposed filter in comparison to Lee but with a significantly less blurry effect and a comparable performance in terms of noise reduction to wavelet but with less artifacts. The results also show better preservation of edges, texture, and point targets by the proposed filter than both Lee and wavelet and less required computational time. |
doi_str_mv | 10.1109/TGRS.2013.2295824 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2013_2295824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6717020</ieee_id><sourcerecordid>3377783241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-48c24dbb74eeda548d9fe6918a6ba231ca478e6abcc04ce85f929c22780d566e3</originalsourceid><addsrcrecordid>eNpdkLFOwzAURS0EEqXwAYjFEgtLip9jO_bYVlAqVSA1ZbYc5wVS0iTEzcDfk6oVA9Ndzr26OoTcApsAMPO4WazTCWcQTzg3UnNxRkYgpY6YEuKcjBgYFXFt-CW5CmHLGAgJyYjM0j4LrfMYzVzAnG7Qf9bld4-0aDqatui_KqSvTRmQrjHv_b5salrWNJ2u6XLnPjBck4vCVQFvTjkm789Pm_lLtHpbLOfTVeRjrvaR0J6LPMsSgZg7KXRuClQGtFOZ4zF4JxKNymXeM-FRy8Jw4zlPNMulUhiPycNxt-2a4WDY210ZPFaVq7HpgwWljDYShB7Q-3_otum7enhnQQppjFbABgqOlO-aEDosbNuVO9f9WGD2YNUerNqDVXuyOnTujp0SEf94lUDCOIt_AXLkccA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1545998610</pqid></control><display><type>article</type><title>Subspace-Based Technique for Speckle Noise Reduction in SAR Images</title><source>IEEE Electronic Library (IEL)</source><creator>Yahya, Norashikin ; Kamel, Nidal S. ; Malik, Aamir Saeed</creator><creatorcontrib>Yahya, Norashikin ; Kamel, Nidal S. ; Malik, Aamir Saeed</creatorcontrib><description>Image-subspace-based approach for speckle noise removal from synthetic aperture radar (SAR) images is proposed. The underlying principle is to apply homomorphic framework in order to convert multiplicative speckle noise into additive and then to decompose the vector space of the noisy image into signal and noise subspaces. Enhancement is performed by nulling the noise subspace and estimating the clean image from the remaining signal subspace. Linear estimator minimizing image distortion while maintaining the residual noise energy below some given threshold is used to estimate the clean image. Experiments are carried out using synthetically generated data set with controlled statistics and real SAR image of Selangor area in Malaysia. The performance of the proposed technique is compared with Lee and homomorphic wavelet in terms of noise variance reduction and preservation of radiometric edges. The results indicate moderate noise reduction by the proposed filter in comparison to Lee but with a significantly less blurry effect and a comparable performance in terms of noise reduction to wavelet but with less artifacts. The results also show better preservation of edges, texture, and point targets by the proposed filter than both Lee and wavelet and less required computational time.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2013.2295824</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Eigenvalues and eigenfunctions ; Image denoising ; Noise ; Noise measurement ; Noise reduction ; Preservation ; principal component analysis (PCA) ; Radar ; spatial filters ; Speckle ; stochastic processes ; Subspaces ; Synthetic aperture radar ; synthetic aperture radar (SAR) ; Texture ; Vectors ; Wavelet</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2014-10, Vol.52 (10), p.6257-6271</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-48c24dbb74eeda548d9fe6918a6ba231ca478e6abcc04ce85f929c22780d566e3</citedby><cites>FETCH-LOGICAL-c326t-48c24dbb74eeda548d9fe6918a6ba231ca478e6abcc04ce85f929c22780d566e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6717020$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6717020$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yahya, Norashikin</creatorcontrib><creatorcontrib>Kamel, Nidal S.</creatorcontrib><creatorcontrib>Malik, Aamir Saeed</creatorcontrib><title>Subspace-Based Technique for Speckle Noise Reduction in SAR Images</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Image-subspace-based approach for speckle noise removal from synthetic aperture radar (SAR) images is proposed. The underlying principle is to apply homomorphic framework in order to convert multiplicative speckle noise into additive and then to decompose the vector space of the noisy image into signal and noise subspaces. Enhancement is performed by nulling the noise subspace and estimating the clean image from the remaining signal subspace. Linear estimator minimizing image distortion while maintaining the residual noise energy below some given threshold is used to estimate the clean image. Experiments are carried out using synthetically generated data set with controlled statistics and real SAR image of Selangor area in Malaysia. The performance of the proposed technique is compared with Lee and homomorphic wavelet in terms of noise variance reduction and preservation of radiometric edges. The results indicate moderate noise reduction by the proposed filter in comparison to Lee but with a significantly less blurry effect and a comparable performance in terms of noise reduction to wavelet but with less artifacts. The results also show better preservation of edges, texture, and point targets by the proposed filter than both Lee and wavelet and less required computational time.</description><subject>Algorithms</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Image denoising</subject><subject>Noise</subject><subject>Noise measurement</subject><subject>Noise reduction</subject><subject>Preservation</subject><subject>principal component analysis (PCA)</subject><subject>Radar</subject><subject>spatial filters</subject><subject>Speckle</subject><subject>stochastic processes</subject><subject>Subspaces</subject><subject>Synthetic aperture radar</subject><subject>synthetic aperture radar (SAR)</subject><subject>Texture</subject><subject>Vectors</subject><subject>Wavelet</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkLFOwzAURS0EEqXwAYjFEgtLip9jO_bYVlAqVSA1ZbYc5wVS0iTEzcDfk6oVA9Ndzr26OoTcApsAMPO4WazTCWcQTzg3UnNxRkYgpY6YEuKcjBgYFXFt-CW5CmHLGAgJyYjM0j4LrfMYzVzAnG7Qf9bld4-0aDqatui_KqSvTRmQrjHv_b5salrWNJ2u6XLnPjBck4vCVQFvTjkm789Pm_lLtHpbLOfTVeRjrvaR0J6LPMsSgZg7KXRuClQGtFOZ4zF4JxKNymXeM-FRy8Jw4zlPNMulUhiPycNxt-2a4WDY210ZPFaVq7HpgwWljDYShB7Q-3_otum7enhnQQppjFbABgqOlO-aEDosbNuVO9f9WGD2YNUerNqDVXuyOnTujp0SEf94lUDCOIt_AXLkccA</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Yahya, Norashikin</creator><creator>Kamel, Nidal S.</creator><creator>Malik, Aamir Saeed</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7SP</scope><scope>F28</scope></search><sort><creationdate>20141001</creationdate><title>Subspace-Based Technique for Speckle Noise Reduction in SAR Images</title><author>Yahya, Norashikin ; Kamel, Nidal S. ; Malik, Aamir Saeed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-48c24dbb74eeda548d9fe6918a6ba231ca478e6abcc04ce85f929c22780d566e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Image denoising</topic><topic>Noise</topic><topic>Noise measurement</topic><topic>Noise reduction</topic><topic>Preservation</topic><topic>principal component analysis (PCA)</topic><topic>Radar</topic><topic>spatial filters</topic><topic>Speckle</topic><topic>stochastic processes</topic><topic>Subspaces</topic><topic>Synthetic aperture radar</topic><topic>synthetic aperture radar (SAR)</topic><topic>Texture</topic><topic>Vectors</topic><topic>Wavelet</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yahya, Norashikin</creatorcontrib><creatorcontrib>Kamel, Nidal S.</creatorcontrib><creatorcontrib>Malik, Aamir Saeed</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics & Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yahya, Norashikin</au><au>Kamel, Nidal S.</au><au>Malik, Aamir Saeed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subspace-Based Technique for Speckle Noise Reduction in SAR Images</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2014-10-01</date><risdate>2014</risdate><volume>52</volume><issue>10</issue><spage>6257</spage><epage>6271</epage><pages>6257-6271</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Image-subspace-based approach for speckle noise removal from synthetic aperture radar (SAR) images is proposed. The underlying principle is to apply homomorphic framework in order to convert multiplicative speckle noise into additive and then to decompose the vector space of the noisy image into signal and noise subspaces. Enhancement is performed by nulling the noise subspace and estimating the clean image from the remaining signal subspace. Linear estimator minimizing image distortion while maintaining the residual noise energy below some given threshold is used to estimate the clean image. Experiments are carried out using synthetically generated data set with controlled statistics and real SAR image of Selangor area in Malaysia. The performance of the proposed technique is compared with Lee and homomorphic wavelet in terms of noise variance reduction and preservation of radiometric edges. The results indicate moderate noise reduction by the proposed filter in comparison to Lee but with a significantly less blurry effect and a comparable performance in terms of noise reduction to wavelet but with less artifacts. The results also show better preservation of edges, texture, and point targets by the proposed filter than both Lee and wavelet and less required computational time.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2013.2295824</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2014-10, Vol.52 (10), p.6257-6271 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TGRS_2013_2295824 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Eigenvalues and eigenfunctions Image denoising Noise Noise measurement Noise reduction Preservation principal component analysis (PCA) Radar spatial filters Speckle stochastic processes Subspaces Synthetic aperture radar synthetic aperture radar (SAR) Texture Vectors Wavelet |
title | Subspace-Based Technique for Speckle Noise Reduction in SAR Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T02%3A24%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subspace-Based%20Technique%20for%20Speckle%20Noise%20Reduction%20in%20SAR%20Images&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Yahya,%20Norashikin&rft.date=2014-10-01&rft.volume=52&rft.issue=10&rft.spage=6257&rft.epage=6271&rft.pages=6257-6271&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2013.2295824&rft_dat=%3Cproquest_RIE%3E3377783241%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1545998610&rft_id=info:pmid/&rft_ieee_id=6717020&rfr_iscdi=true |