Semisupervised Neural Networks for Efficient Hyperspectral Image Classification
A framework for semisupervised remote sensing image classification based on neural networks is presented. The methodology consists of adding a flexible embedding regularizer to the loss function used for training neural networks. Training is done using stochastic gradient descent with additional bal...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2010-05, Vol.48 (5), p.2271-2282 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2282 |
---|---|
container_issue | 5 |
container_start_page | 2271 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 48 |
creator | Ratle, Frederic Camps-Valls, Gustavo Weston, Jason |
description | A framework for semisupervised remote sensing image classification based on neural networks is presented. The methodology consists of adding a flexible embedding regularizer to the loss function used for training neural networks. Training is done using stochastic gradient descent with additional balancing constraints to avoid falling into local minima. The method constitutes a generalization of both supervised and unsupervised methods and can handle millions of unlabeled samples. Therefore, the proposed approach gives rise to an operational classifier, as opposed to previously presented transductive or Laplacian support vector machines (TSVM or LapSVM, respectively). The proposed methodology constitutes a general framework for building computationally efficient semisupervised methods. The method is compared with LapSVM and TSVM in semisupervised scenarios, to SVM in supervised settings, and to online and batch k -means for unsupervised learning. Results demonstrate the improved classification accuracy and scalability of this approach on several hyperspectral image classification problems. |
doi_str_mv | 10.1109/TGRS.2009.2037898 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2009_2037898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5411821</ieee_id><sourcerecordid>2716680171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-8b01927442c5bd8553ba3e9764e3642ed980653ec2b64e3eb28e5bc0c76295263</originalsourceid><addsrcrecordid>eNpd0E1LxDAQBuAgCq4fP0C8FEQ8VZNJ0iRHWdZVEAU_ziXNTiVrt12TVvHfm7LLHrxkIHlmmLyEnDF6zRg1N2_zl9droNSkgytt9B6ZMCl1Tgsh9smEMlPkoA0ckqMYl5QyIZmakOdXXPk4rDF8-4iL7AmHYJtU-p8ufMas7kI2q2vvPLZ9dv-bYFyj60f0sLIfmE0bG6NPwva-a0_IQW2biKfbekze72Zv0_v88Xn-ML19zB2Xss91lRYCJQQ4WS20lLyyHI0qBPJCAC6MpoXk6KAar7ACjbJy1KkCjISCH5Orzdx16L4GjH2ZvuGwaWyL3RBLJbniggmR5MU_ueyG0KblSkZBsUIBh6TYRrnQxRiwLtfBr2z4TagcEy7HhMsx4XKbcOq53E620dmmDrZ1Pu4aARQYalRy5xvnEXH3LAVjGhj_A8nmg4U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027167232</pqid></control><display><type>article</type><title>Semisupervised Neural Networks for Efficient Hyperspectral Image Classification</title><source>IEEE Electronic Library (IEL)</source><creator>Ratle, Frederic ; Camps-Valls, Gustavo ; Weston, Jason</creator><creatorcontrib>Ratle, Frederic ; Camps-Valls, Gustavo ; Weston, Jason</creatorcontrib><description>A framework for semisupervised remote sensing image classification based on neural networks is presented. The methodology consists of adding a flexible embedding regularizer to the loss function used for training neural networks. Training is done using stochastic gradient descent with additional balancing constraints to avoid falling into local minima. The method constitutes a generalization of both supervised and unsupervised methods and can handle millions of unlabeled samples. Therefore, the proposed approach gives rise to an operational classifier, as opposed to previously presented transductive or Laplacian support vector machines (TSVM or LapSVM, respectively). The proposed methodology constitutes a general framework for building computationally efficient semisupervised methods. The method is compared with LapSVM and TSVM in semisupervised scenarios, to SVM in supervised settings, and to online and batch k -means for unsupervised learning. Results demonstrate the improved classification accuracy and scalability of this approach on several hyperspectral image classification problems.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2009.2037898</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied geophysics ; Computational efficiency ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Graph Laplacian ; hyperspectral image classification ; Hyperspectral imaging ; Hyperspectral sensors ; Image classification ; Internal geophysics ; Laplace equations ; Laplacian support vector machine (LapSVM) ; Mathematical analysis ; Methodology ; Neural networks ; regularization ; Remote sensing ; semisupervised learning (SSL) ; Stochastic processes ; support vector machine (SVM) ; Support vector machine classification ; Support vector machines ; Training ; transductive SVM (TSVM) ; Unsupervised learning</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2010-05, Vol.48 (5), p.2271-2282</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-8b01927442c5bd8553ba3e9764e3642ed980653ec2b64e3eb28e5bc0c76295263</citedby><cites>FETCH-LOGICAL-c355t-8b01927442c5bd8553ba3e9764e3642ed980653ec2b64e3eb28e5bc0c76295263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5411821$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5411821$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22729097$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ratle, Frederic</creatorcontrib><creatorcontrib>Camps-Valls, Gustavo</creatorcontrib><creatorcontrib>Weston, Jason</creatorcontrib><title>Semisupervised Neural Networks for Efficient Hyperspectral Image Classification</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>A framework for semisupervised remote sensing image classification based on neural networks is presented. The methodology consists of adding a flexible embedding regularizer to the loss function used for training neural networks. Training is done using stochastic gradient descent with additional balancing constraints to avoid falling into local minima. The method constitutes a generalization of both supervised and unsupervised methods and can handle millions of unlabeled samples. Therefore, the proposed approach gives rise to an operational classifier, as opposed to previously presented transductive or Laplacian support vector machines (TSVM or LapSVM, respectively). The proposed methodology constitutes a general framework for building computationally efficient semisupervised methods. The method is compared with LapSVM and TSVM in semisupervised scenarios, to SVM in supervised settings, and to online and batch k -means for unsupervised learning. Results demonstrate the improved classification accuracy and scalability of this approach on several hyperspectral image classification problems.</description><subject>Applied geophysics</subject><subject>Computational efficiency</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Graph Laplacian</subject><subject>hyperspectral image classification</subject><subject>Hyperspectral imaging</subject><subject>Hyperspectral sensors</subject><subject>Image classification</subject><subject>Internal geophysics</subject><subject>Laplace equations</subject><subject>Laplacian support vector machine (LapSVM)</subject><subject>Mathematical analysis</subject><subject>Methodology</subject><subject>Neural networks</subject><subject>regularization</subject><subject>Remote sensing</subject><subject>semisupervised learning (SSL)</subject><subject>Stochastic processes</subject><subject>support vector machine (SVM)</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><subject>Training</subject><subject>transductive SVM (TSVM)</subject><subject>Unsupervised learning</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpd0E1LxDAQBuAgCq4fP0C8FEQ8VZNJ0iRHWdZVEAU_ziXNTiVrt12TVvHfm7LLHrxkIHlmmLyEnDF6zRg1N2_zl9droNSkgytt9B6ZMCl1Tgsh9smEMlPkoA0ckqMYl5QyIZmakOdXXPk4rDF8-4iL7AmHYJtU-p8ufMas7kI2q2vvPLZ9dv-bYFyj60f0sLIfmE0bG6NPwva-a0_IQW2biKfbekze72Zv0_v88Xn-ML19zB2Xss91lRYCJQQ4WS20lLyyHI0qBPJCAC6MpoXk6KAar7ACjbJy1KkCjISCH5Orzdx16L4GjH2ZvuGwaWyL3RBLJbniggmR5MU_ueyG0KblSkZBsUIBh6TYRrnQxRiwLtfBr2z4TagcEy7HhMsx4XKbcOq53E620dmmDrZ1Pu4aARQYalRy5xvnEXH3LAVjGhj_A8nmg4U</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Ratle, Frederic</creator><creator>Camps-Valls, Gustavo</creator><creator>Weston, Jason</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7SP</scope><scope>F28</scope></search><sort><creationdate>20100501</creationdate><title>Semisupervised Neural Networks for Efficient Hyperspectral Image Classification</title><author>Ratle, Frederic ; Camps-Valls, Gustavo ; Weston, Jason</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-8b01927442c5bd8553ba3e9764e3642ed980653ec2b64e3eb28e5bc0c76295263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied geophysics</topic><topic>Computational efficiency</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Graph Laplacian</topic><topic>hyperspectral image classification</topic><topic>Hyperspectral imaging</topic><topic>Hyperspectral sensors</topic><topic>Image classification</topic><topic>Internal geophysics</topic><topic>Laplace equations</topic><topic>Laplacian support vector machine (LapSVM)</topic><topic>Mathematical analysis</topic><topic>Methodology</topic><topic>Neural networks</topic><topic>regularization</topic><topic>Remote sensing</topic><topic>semisupervised learning (SSL)</topic><topic>Stochastic processes</topic><topic>support vector machine (SVM)</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><topic>Training</topic><topic>transductive SVM (TSVM)</topic><topic>Unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ratle, Frederic</creatorcontrib><creatorcontrib>Camps-Valls, Gustavo</creatorcontrib><creatorcontrib>Weston, Jason</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics & Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ratle, Frederic</au><au>Camps-Valls, Gustavo</au><au>Weston, Jason</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semisupervised Neural Networks for Efficient Hyperspectral Image Classification</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2010-05-01</date><risdate>2010</risdate><volume>48</volume><issue>5</issue><spage>2271</spage><epage>2282</epage><pages>2271-2282</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>A framework for semisupervised remote sensing image classification based on neural networks is presented. The methodology consists of adding a flexible embedding regularizer to the loss function used for training neural networks. Training is done using stochastic gradient descent with additional balancing constraints to avoid falling into local minima. The method constitutes a generalization of both supervised and unsupervised methods and can handle millions of unlabeled samples. Therefore, the proposed approach gives rise to an operational classifier, as opposed to previously presented transductive or Laplacian support vector machines (TSVM or LapSVM, respectively). The proposed methodology constitutes a general framework for building computationally efficient semisupervised methods. The method is compared with LapSVM and TSVM in semisupervised scenarios, to SVM in supervised settings, and to online and batch k -means for unsupervised learning. Results demonstrate the improved classification accuracy and scalability of this approach on several hyperspectral image classification problems.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TGRS.2009.2037898</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2010-05, Vol.48 (5), p.2271-2282 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TGRS_2009_2037898 |
source | IEEE Electronic Library (IEL) |
subjects | Applied geophysics Computational efficiency Earth sciences Earth, ocean, space Exact sciences and technology Graph Laplacian hyperspectral image classification Hyperspectral imaging Hyperspectral sensors Image classification Internal geophysics Laplace equations Laplacian support vector machine (LapSVM) Mathematical analysis Methodology Neural networks regularization Remote sensing semisupervised learning (SSL) Stochastic processes support vector machine (SVM) Support vector machine classification Support vector machines Training transductive SVM (TSVM) Unsupervised learning |
title | Semisupervised Neural Networks for Efficient Hyperspectral Image Classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A55%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semisupervised%20Neural%20Networks%20for%20Efficient%20Hyperspectral%20Image%20Classification&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Ratle,%20Frederic&rft.date=2010-05-01&rft.volume=48&rft.issue=5&rft.spage=2271&rft.epage=2282&rft.pages=2271-2282&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2009.2037898&rft_dat=%3Cproquest_RIE%3E2716680171%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1027167232&rft_id=info:pmid/&rft_ieee_id=5411821&rfr_iscdi=true |