Semisupervised Neural Networks for Efficient Hyperspectral Image Classification

A framework for semisupervised remote sensing image classification based on neural networks is presented. The methodology consists of adding a flexible embedding regularizer to the loss function used for training neural networks. Training is done using stochastic gradient descent with additional bal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2010-05, Vol.48 (5), p.2271-2282
Hauptverfasser: Ratle, Frederic, Camps-Valls, Gustavo, Weston, Jason
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2282
container_issue 5
container_start_page 2271
container_title IEEE transactions on geoscience and remote sensing
container_volume 48
creator Ratle, Frederic
Camps-Valls, Gustavo
Weston, Jason
description A framework for semisupervised remote sensing image classification based on neural networks is presented. The methodology consists of adding a flexible embedding regularizer to the loss function used for training neural networks. Training is done using stochastic gradient descent with additional balancing constraints to avoid falling into local minima. The method constitutes a generalization of both supervised and unsupervised methods and can handle millions of unlabeled samples. Therefore, the proposed approach gives rise to an operational classifier, as opposed to previously presented transductive or Laplacian support vector machines (TSVM or LapSVM, respectively). The proposed methodology constitutes a general framework for building computationally efficient semisupervised methods. The method is compared with LapSVM and TSVM in semisupervised scenarios, to SVM in supervised settings, and to online and batch k -means for unsupervised learning. Results demonstrate the improved classification accuracy and scalability of this approach on several hyperspectral image classification problems.
doi_str_mv 10.1109/TGRS.2009.2037898
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGRS_2009_2037898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5411821</ieee_id><sourcerecordid>2716680171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-8b01927442c5bd8553ba3e9764e3642ed980653ec2b64e3eb28e5bc0c76295263</originalsourceid><addsrcrecordid>eNpd0E1LxDAQBuAgCq4fP0C8FEQ8VZNJ0iRHWdZVEAU_ziXNTiVrt12TVvHfm7LLHrxkIHlmmLyEnDF6zRg1N2_zl9droNSkgytt9B6ZMCl1Tgsh9smEMlPkoA0ckqMYl5QyIZmakOdXXPk4rDF8-4iL7AmHYJtU-p8ufMas7kI2q2vvPLZ9dv-bYFyj60f0sLIfmE0bG6NPwva-a0_IQW2biKfbekze72Zv0_v88Xn-ML19zB2Xss91lRYCJQQ4WS20lLyyHI0qBPJCAC6MpoXk6KAar7ACjbJy1KkCjISCH5Orzdx16L4GjH2ZvuGwaWyL3RBLJbniggmR5MU_ueyG0KblSkZBsUIBh6TYRrnQxRiwLtfBr2z4TagcEy7HhMsx4XKbcOq53E620dmmDrZ1Pu4aARQYalRy5xvnEXH3LAVjGhj_A8nmg4U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027167232</pqid></control><display><type>article</type><title>Semisupervised Neural Networks for Efficient Hyperspectral Image Classification</title><source>IEEE Electronic Library (IEL)</source><creator>Ratle, Frederic ; Camps-Valls, Gustavo ; Weston, Jason</creator><creatorcontrib>Ratle, Frederic ; Camps-Valls, Gustavo ; Weston, Jason</creatorcontrib><description>A framework for semisupervised remote sensing image classification based on neural networks is presented. The methodology consists of adding a flexible embedding regularizer to the loss function used for training neural networks. Training is done using stochastic gradient descent with additional balancing constraints to avoid falling into local minima. The method constitutes a generalization of both supervised and unsupervised methods and can handle millions of unlabeled samples. Therefore, the proposed approach gives rise to an operational classifier, as opposed to previously presented transductive or Laplacian support vector machines (TSVM or LapSVM, respectively). The proposed methodology constitutes a general framework for building computationally efficient semisupervised methods. The method is compared with LapSVM and TSVM in semisupervised scenarios, to SVM in supervised settings, and to online and batch k -means for unsupervised learning. Results demonstrate the improved classification accuracy and scalability of this approach on several hyperspectral image classification problems.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2009.2037898</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied geophysics ; Computational efficiency ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Graph Laplacian ; hyperspectral image classification ; Hyperspectral imaging ; Hyperspectral sensors ; Image classification ; Internal geophysics ; Laplace equations ; Laplacian support vector machine (LapSVM) ; Mathematical analysis ; Methodology ; Neural networks ; regularization ; Remote sensing ; semisupervised learning (SSL) ; Stochastic processes ; support vector machine (SVM) ; Support vector machine classification ; Support vector machines ; Training ; transductive SVM (TSVM) ; Unsupervised learning</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2010-05, Vol.48 (5), p.2271-2282</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-8b01927442c5bd8553ba3e9764e3642ed980653ec2b64e3eb28e5bc0c76295263</citedby><cites>FETCH-LOGICAL-c355t-8b01927442c5bd8553ba3e9764e3642ed980653ec2b64e3eb28e5bc0c76295263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5411821$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5411821$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22729097$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ratle, Frederic</creatorcontrib><creatorcontrib>Camps-Valls, Gustavo</creatorcontrib><creatorcontrib>Weston, Jason</creatorcontrib><title>Semisupervised Neural Networks for Efficient Hyperspectral Image Classification</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>A framework for semisupervised remote sensing image classification based on neural networks is presented. The methodology consists of adding a flexible embedding regularizer to the loss function used for training neural networks. Training is done using stochastic gradient descent with additional balancing constraints to avoid falling into local minima. The method constitutes a generalization of both supervised and unsupervised methods and can handle millions of unlabeled samples. Therefore, the proposed approach gives rise to an operational classifier, as opposed to previously presented transductive or Laplacian support vector machines (TSVM or LapSVM, respectively). The proposed methodology constitutes a general framework for building computationally efficient semisupervised methods. The method is compared with LapSVM and TSVM in semisupervised scenarios, to SVM in supervised settings, and to online and batch k -means for unsupervised learning. Results demonstrate the improved classification accuracy and scalability of this approach on several hyperspectral image classification problems.</description><subject>Applied geophysics</subject><subject>Computational efficiency</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Graph Laplacian</subject><subject>hyperspectral image classification</subject><subject>Hyperspectral imaging</subject><subject>Hyperspectral sensors</subject><subject>Image classification</subject><subject>Internal geophysics</subject><subject>Laplace equations</subject><subject>Laplacian support vector machine (LapSVM)</subject><subject>Mathematical analysis</subject><subject>Methodology</subject><subject>Neural networks</subject><subject>regularization</subject><subject>Remote sensing</subject><subject>semisupervised learning (SSL)</subject><subject>Stochastic processes</subject><subject>support vector machine (SVM)</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><subject>Training</subject><subject>transductive SVM (TSVM)</subject><subject>Unsupervised learning</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpd0E1LxDAQBuAgCq4fP0C8FEQ8VZNJ0iRHWdZVEAU_ziXNTiVrt12TVvHfm7LLHrxkIHlmmLyEnDF6zRg1N2_zl9droNSkgytt9B6ZMCl1Tgsh9smEMlPkoA0ckqMYl5QyIZmakOdXXPk4rDF8-4iL7AmHYJtU-p8ufMas7kI2q2vvPLZ9dv-bYFyj60f0sLIfmE0bG6NPwva-a0_IQW2biKfbekze72Zv0_v88Xn-ML19zB2Xss91lRYCJQQ4WS20lLyyHI0qBPJCAC6MpoXk6KAar7ACjbJy1KkCjISCH5Orzdx16L4GjH2ZvuGwaWyL3RBLJbniggmR5MU_ueyG0KblSkZBsUIBh6TYRrnQxRiwLtfBr2z4TagcEy7HhMsx4XKbcOq53E620dmmDrZ1Pu4aARQYalRy5xvnEXH3LAVjGhj_A8nmg4U</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Ratle, Frederic</creator><creator>Camps-Valls, Gustavo</creator><creator>Weston, Jason</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7SP</scope><scope>F28</scope></search><sort><creationdate>20100501</creationdate><title>Semisupervised Neural Networks for Efficient Hyperspectral Image Classification</title><author>Ratle, Frederic ; Camps-Valls, Gustavo ; Weston, Jason</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-8b01927442c5bd8553ba3e9764e3642ed980653ec2b64e3eb28e5bc0c76295263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied geophysics</topic><topic>Computational efficiency</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Graph Laplacian</topic><topic>hyperspectral image classification</topic><topic>Hyperspectral imaging</topic><topic>Hyperspectral sensors</topic><topic>Image classification</topic><topic>Internal geophysics</topic><topic>Laplace equations</topic><topic>Laplacian support vector machine (LapSVM)</topic><topic>Mathematical analysis</topic><topic>Methodology</topic><topic>Neural networks</topic><topic>regularization</topic><topic>Remote sensing</topic><topic>semisupervised learning (SSL)</topic><topic>Stochastic processes</topic><topic>support vector machine (SVM)</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><topic>Training</topic><topic>transductive SVM (TSVM)</topic><topic>Unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ratle, Frederic</creatorcontrib><creatorcontrib>Camps-Valls, Gustavo</creatorcontrib><creatorcontrib>Weston, Jason</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ratle, Frederic</au><au>Camps-Valls, Gustavo</au><au>Weston, Jason</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semisupervised Neural Networks for Efficient Hyperspectral Image Classification</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2010-05-01</date><risdate>2010</risdate><volume>48</volume><issue>5</issue><spage>2271</spage><epage>2282</epage><pages>2271-2282</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>A framework for semisupervised remote sensing image classification based on neural networks is presented. The methodology consists of adding a flexible embedding regularizer to the loss function used for training neural networks. Training is done using stochastic gradient descent with additional balancing constraints to avoid falling into local minima. The method constitutes a generalization of both supervised and unsupervised methods and can handle millions of unlabeled samples. Therefore, the proposed approach gives rise to an operational classifier, as opposed to previously presented transductive or Laplacian support vector machines (TSVM or LapSVM, respectively). The proposed methodology constitutes a general framework for building computationally efficient semisupervised methods. The method is compared with LapSVM and TSVM in semisupervised scenarios, to SVM in supervised settings, and to online and batch k -means for unsupervised learning. Results demonstrate the improved classification accuracy and scalability of this approach on several hyperspectral image classification problems.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TGRS.2009.2037898</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2010-05, Vol.48 (5), p.2271-2282
issn 0196-2892
1558-0644
language eng
recordid cdi_crossref_primary_10_1109_TGRS_2009_2037898
source IEEE Electronic Library (IEL)
subjects Applied geophysics
Computational efficiency
Earth sciences
Earth, ocean, space
Exact sciences and technology
Graph Laplacian
hyperspectral image classification
Hyperspectral imaging
Hyperspectral sensors
Image classification
Internal geophysics
Laplace equations
Laplacian support vector machine (LapSVM)
Mathematical analysis
Methodology
Neural networks
regularization
Remote sensing
semisupervised learning (SSL)
Stochastic processes
support vector machine (SVM)
Support vector machine classification
Support vector machines
Training
transductive SVM (TSVM)
Unsupervised learning
title Semisupervised Neural Networks for Efficient Hyperspectral Image Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A55%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semisupervised%20Neural%20Networks%20for%20Efficient%20Hyperspectral%20Image%20Classification&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Ratle,%20Frederic&rft.date=2010-05-01&rft.volume=48&rft.issue=5&rft.spage=2271&rft.epage=2282&rft.pages=2271-2282&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2009.2037898&rft_dat=%3Cproquest_RIE%3E2716680171%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1027167232&rft_id=info:pmid/&rft_ieee_id=5411821&rfr_iscdi=true