Energy-Aware Dynamic Trajectory Planning for UAV-Enabled Data Collection in mMTC Networks

A fundamental design problem for massive machine-type communication (mMTC) networks is efficient data collection from the machine-type communication devices (MTCDs), which is the subject of investigation in this paper. An unmanned aerial vehicle (UAV) being deployed to facilitate data collection fro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on green communications and networking 2022-12, Vol.6 (4), p.1957-1971
Hauptverfasser: Shen, Lingfeng, Wang, Ning, Zhang, Di, Chen, Jun, Mu, Xiaomin, Wong, Kon Max
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1971
container_issue 4
container_start_page 1957
container_title IEEE transactions on green communications and networking
container_volume 6
creator Shen, Lingfeng
Wang, Ning
Zhang, Di
Chen, Jun
Mu, Xiaomin
Wong, Kon Max
description A fundamental design problem for massive machine-type communication (mMTC) networks is efficient data collection from the machine-type communication devices (MTCDs), which is the subject of investigation in this paper. An unmanned aerial vehicle (UAV) being deployed to facilitate data collection from MTCDs is considered. Taking into account the limited energy for both the UAV and MTCDs, a problem of minimizing the total energy consumption subject to completion of the data collection tasks by planning the UAV trajectory is formulated. A Global Optimum (GOP) trajectory can be obtained for a UAV serving all the MTCDs simultaneously if the UAV's flying altitude is larger than \sqrt {3} times its maximum service radius. However, communication energy efficiency drops as the UAV's altitude increases. Clustering-based service strategies and dynamic trajectory planning algorithms, namely clustered GOP (C-GOP) and clustered particle swarm optimization (C-PSO), are proposed to overcome the above issue. The data collection efficiency is maximized by locating the optimal UAV hovering point for each serving MTCD cluster, which is dynamically adjusted with the UAV hovering position until all MTCDs are served. It is shown that the GOP is the optimal strategy for a small number of MTCDs concentrated in a small area. While for large number of MTCDs or task area, the clustered algorithms are more favorable from energy efficiency, complexity and scalability perspectives.
doi_str_mv 10.1109/TGCN.2022.3186841
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGCN_2022_3186841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9810009</ieee_id><sourcerecordid>2739333040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-9536d8218728b5ff1367e55e05dc9da66841b063b28f0fdbbe89d670fbc8d0dd3</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhosoOOZ-gHgT8LrzJOlHcjm6OYU5vegEr0LaJKOzS2baMfrvbdkQr865eN73cJ4guMcwxRj4U77M1lMChEwpZgmL8FUwIlFKQxIBXP_bb4NJ0-wAgPAYJ5yOgq-F1X7bhbOT9BrNOyv3VYlyL3e6bJ3v0Ectra3sFhnn0Wb2GS6sLGqt0Fy2EmWurnuwchZVFu3f8gytdXty_ru5C26MrBs9ucxxsHle5NlLuHpfvmazVVgSTtuQxzRRjGCWElbExmCapDqONcSq5EomwzsFJLQgzIBRRaEZV0kKpiiZAqXoOHg89x68-znqphU7d_S2PylISjmlFCLoKXymSu-axmsjDr7aS98JDGKQKAaJYpAoLhL7zMM5U2mt_3jOcC-Q01895GxW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2739333040</pqid></control><display><type>article</type><title>Energy-Aware Dynamic Trajectory Planning for UAV-Enabled Data Collection in mMTC Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Shen, Lingfeng ; Wang, Ning ; Zhang, Di ; Chen, Jun ; Mu, Xiaomin ; Wong, Kon Max</creator><creatorcontrib>Shen, Lingfeng ; Wang, Ning ; Zhang, Di ; Chen, Jun ; Mu, Xiaomin ; Wong, Kon Max</creatorcontrib><description>A fundamental design problem for massive machine-type communication (mMTC) networks is efficient data collection from the machine-type communication devices (MTCDs), which is the subject of investigation in this paper. An unmanned aerial vehicle (UAV) being deployed to facilitate data collection from MTCDs is considered. Taking into account the limited energy for both the UAV and MTCDs, a problem of minimizing the total energy consumption subject to completion of the data collection tasks by planning the UAV trajectory is formulated. A Global Optimum (GOP) trajectory can be obtained for a UAV serving all the MTCDs simultaneously if the UAV's flying altitude is larger than &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\sqrt {3} &lt;/tex-math&gt;&lt;/inline-formula&gt; times its maximum service radius. However, communication energy efficiency drops as the UAV's altitude increases. Clustering-based service strategies and dynamic trajectory planning algorithms, namely clustered GOP (C-GOP) and clustered particle swarm optimization (C-PSO), are proposed to overcome the above issue. The data collection efficiency is maximized by locating the optimal UAV hovering point for each serving MTCD cluster, which is dynamically adjusted with the UAV hovering position until all MTCDs are served. It is shown that the GOP is the optimal strategy for a small number of MTCDs concentrated in a small area. While for large number of MTCDs or task area, the clustered algorithms are more favorable from energy efficiency, complexity and scalability perspectives.</description><identifier>ISSN: 2473-2400</identifier><identifier>EISSN: 2473-2400</identifier><identifier>DOI: 10.1109/TGCN.2022.3186841</identifier><identifier>CODEN: ITGCBM</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Altitude ; Autonomous aerial vehicles ; Clustering ; Communication ; Data collection ; Data models ; Dynamic trajectory planning ; Energy consumption ; Energy efficiency ; Energy management ; Hovering ; massive machine-type communications ; Particle swarm optimization ; Task analysis ; Trajectory ; Trajectory planning ; UAV-enabled data collection ; Unmanned aerial vehicles</subject><ispartof>IEEE transactions on green communications and networking, 2022-12, Vol.6 (4), p.1957-1971</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-9536d8218728b5ff1367e55e05dc9da66841b063b28f0fdbbe89d670fbc8d0dd3</citedby><cites>FETCH-LOGICAL-c293t-9536d8218728b5ff1367e55e05dc9da66841b063b28f0fdbbe89d670fbc8d0dd3</cites><orcidid>0000-0002-8084-9332 ; 0000-0001-7190-1621 ; 0000-0001-9403-3417</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9810009$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9810009$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shen, Lingfeng</creatorcontrib><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Zhang, Di</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><creatorcontrib>Mu, Xiaomin</creatorcontrib><creatorcontrib>Wong, Kon Max</creatorcontrib><title>Energy-Aware Dynamic Trajectory Planning for UAV-Enabled Data Collection in mMTC Networks</title><title>IEEE transactions on green communications and networking</title><addtitle>TGCN</addtitle><description>A fundamental design problem for massive machine-type communication (mMTC) networks is efficient data collection from the machine-type communication devices (MTCDs), which is the subject of investigation in this paper. An unmanned aerial vehicle (UAV) being deployed to facilitate data collection from MTCDs is considered. Taking into account the limited energy for both the UAV and MTCDs, a problem of minimizing the total energy consumption subject to completion of the data collection tasks by planning the UAV trajectory is formulated. A Global Optimum (GOP) trajectory can be obtained for a UAV serving all the MTCDs simultaneously if the UAV's flying altitude is larger than &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\sqrt {3} &lt;/tex-math&gt;&lt;/inline-formula&gt; times its maximum service radius. However, communication energy efficiency drops as the UAV's altitude increases. Clustering-based service strategies and dynamic trajectory planning algorithms, namely clustered GOP (C-GOP) and clustered particle swarm optimization (C-PSO), are proposed to overcome the above issue. The data collection efficiency is maximized by locating the optimal UAV hovering point for each serving MTCD cluster, which is dynamically adjusted with the UAV hovering position until all MTCDs are served. It is shown that the GOP is the optimal strategy for a small number of MTCDs concentrated in a small area. While for large number of MTCDs or task area, the clustered algorithms are more favorable from energy efficiency, complexity and scalability perspectives.</description><subject>Algorithms</subject><subject>Altitude</subject><subject>Autonomous aerial vehicles</subject><subject>Clustering</subject><subject>Communication</subject><subject>Data collection</subject><subject>Data models</subject><subject>Dynamic trajectory planning</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>Energy management</subject><subject>Hovering</subject><subject>massive machine-type communications</subject><subject>Particle swarm optimization</subject><subject>Task analysis</subject><subject>Trajectory</subject><subject>Trajectory planning</subject><subject>UAV-enabled data collection</subject><subject>Unmanned aerial vehicles</subject><issn>2473-2400</issn><issn>2473-2400</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1LwzAUhosoOOZ-gHgT8LrzJOlHcjm6OYU5vegEr0LaJKOzS2baMfrvbdkQr865eN73cJ4guMcwxRj4U77M1lMChEwpZgmL8FUwIlFKQxIBXP_bb4NJ0-wAgPAYJ5yOgq-F1X7bhbOT9BrNOyv3VYlyL3e6bJ3v0Ectra3sFhnn0Wb2GS6sLGqt0Fy2EmWurnuwchZVFu3f8gytdXty_ru5C26MrBs9ucxxsHle5NlLuHpfvmazVVgSTtuQxzRRjGCWElbExmCapDqONcSq5EomwzsFJLQgzIBRRaEZV0kKpiiZAqXoOHg89x68-znqphU7d_S2PylISjmlFCLoKXymSu-axmsjDr7aS98JDGKQKAaJYpAoLhL7zMM5U2mt_3jOcC-Q01895GxW</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Shen, Lingfeng</creator><creator>Wang, Ning</creator><creator>Zhang, Di</creator><creator>Chen, Jun</creator><creator>Mu, Xiaomin</creator><creator>Wong, Kon Max</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8084-9332</orcidid><orcidid>https://orcid.org/0000-0001-7190-1621</orcidid><orcidid>https://orcid.org/0000-0001-9403-3417</orcidid></search><sort><creationdate>20221201</creationdate><title>Energy-Aware Dynamic Trajectory Planning for UAV-Enabled Data Collection in mMTC Networks</title><author>Shen, Lingfeng ; Wang, Ning ; Zhang, Di ; Chen, Jun ; Mu, Xiaomin ; Wong, Kon Max</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-9536d8218728b5ff1367e55e05dc9da66841b063b28f0fdbbe89d670fbc8d0dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Altitude</topic><topic>Autonomous aerial vehicles</topic><topic>Clustering</topic><topic>Communication</topic><topic>Data collection</topic><topic>Data models</topic><topic>Dynamic trajectory planning</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>Energy management</topic><topic>Hovering</topic><topic>massive machine-type communications</topic><topic>Particle swarm optimization</topic><topic>Task analysis</topic><topic>Trajectory</topic><topic>Trajectory planning</topic><topic>UAV-enabled data collection</topic><topic>Unmanned aerial vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Shen, Lingfeng</creatorcontrib><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Zhang, Di</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><creatorcontrib>Mu, Xiaomin</creatorcontrib><creatorcontrib>Wong, Kon Max</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on green communications and networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shen, Lingfeng</au><au>Wang, Ning</au><au>Zhang, Di</au><au>Chen, Jun</au><au>Mu, Xiaomin</au><au>Wong, Kon Max</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy-Aware Dynamic Trajectory Planning for UAV-Enabled Data Collection in mMTC Networks</atitle><jtitle>IEEE transactions on green communications and networking</jtitle><stitle>TGCN</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>6</volume><issue>4</issue><spage>1957</spage><epage>1971</epage><pages>1957-1971</pages><issn>2473-2400</issn><eissn>2473-2400</eissn><coden>ITGCBM</coden><abstract>A fundamental design problem for massive machine-type communication (mMTC) networks is efficient data collection from the machine-type communication devices (MTCDs), which is the subject of investigation in this paper. An unmanned aerial vehicle (UAV) being deployed to facilitate data collection from MTCDs is considered. Taking into account the limited energy for both the UAV and MTCDs, a problem of minimizing the total energy consumption subject to completion of the data collection tasks by planning the UAV trajectory is formulated. A Global Optimum (GOP) trajectory can be obtained for a UAV serving all the MTCDs simultaneously if the UAV's flying altitude is larger than &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\sqrt {3} &lt;/tex-math&gt;&lt;/inline-formula&gt; times its maximum service radius. However, communication energy efficiency drops as the UAV's altitude increases. Clustering-based service strategies and dynamic trajectory planning algorithms, namely clustered GOP (C-GOP) and clustered particle swarm optimization (C-PSO), are proposed to overcome the above issue. The data collection efficiency is maximized by locating the optimal UAV hovering point for each serving MTCD cluster, which is dynamically adjusted with the UAV hovering position until all MTCDs are served. It is shown that the GOP is the optimal strategy for a small number of MTCDs concentrated in a small area. While for large number of MTCDs or task area, the clustered algorithms are more favorable from energy efficiency, complexity and scalability perspectives.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TGCN.2022.3186841</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-8084-9332</orcidid><orcidid>https://orcid.org/0000-0001-7190-1621</orcidid><orcidid>https://orcid.org/0000-0001-9403-3417</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2473-2400
ispartof IEEE transactions on green communications and networking, 2022-12, Vol.6 (4), p.1957-1971
issn 2473-2400
2473-2400
language eng
recordid cdi_crossref_primary_10_1109_TGCN_2022_3186841
source IEEE Electronic Library (IEL)
subjects Algorithms
Altitude
Autonomous aerial vehicles
Clustering
Communication
Data collection
Data models
Dynamic trajectory planning
Energy consumption
Energy efficiency
Energy management
Hovering
massive machine-type communications
Particle swarm optimization
Task analysis
Trajectory
Trajectory planning
UAV-enabled data collection
Unmanned aerial vehicles
title Energy-Aware Dynamic Trajectory Planning for UAV-Enabled Data Collection in mMTC Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A48%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy-Aware%20Dynamic%20Trajectory%20Planning%20for%20UAV-Enabled%20Data%20Collection%20in%20mMTC%20Networks&rft.jtitle=IEEE%20transactions%20on%20green%20communications%20and%20networking&rft.au=Shen,%20Lingfeng&rft.date=2022-12-01&rft.volume=6&rft.issue=4&rft.spage=1957&rft.epage=1971&rft.pages=1957-1971&rft.issn=2473-2400&rft.eissn=2473-2400&rft.coden=ITGCBM&rft_id=info:doi/10.1109/TGCN.2022.3186841&rft_dat=%3Cproquest_RIE%3E2739333040%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2739333040&rft_id=info:pmid/&rft_ieee_id=9810009&rfr_iscdi=true