Energy-Aware Dynamic Trajectory Planning for UAV-Enabled Data Collection in mMTC Networks
A fundamental design problem for massive machine-type communication (mMTC) networks is efficient data collection from the machine-type communication devices (MTCDs), which is the subject of investigation in this paper. An unmanned aerial vehicle (UAV) being deployed to facilitate data collection fro...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on green communications and networking 2022-12, Vol.6 (4), p.1957-1971 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1971 |
---|---|
container_issue | 4 |
container_start_page | 1957 |
container_title | IEEE transactions on green communications and networking |
container_volume | 6 |
creator | Shen, Lingfeng Wang, Ning Zhang, Di Chen, Jun Mu, Xiaomin Wong, Kon Max |
description | A fundamental design problem for massive machine-type communication (mMTC) networks is efficient data collection from the machine-type communication devices (MTCDs), which is the subject of investigation in this paper. An unmanned aerial vehicle (UAV) being deployed to facilitate data collection from MTCDs is considered. Taking into account the limited energy for both the UAV and MTCDs, a problem of minimizing the total energy consumption subject to completion of the data collection tasks by planning the UAV trajectory is formulated. A Global Optimum (GOP) trajectory can be obtained for a UAV serving all the MTCDs simultaneously if the UAV's flying altitude is larger than \sqrt {3} times its maximum service radius. However, communication energy efficiency drops as the UAV's altitude increases. Clustering-based service strategies and dynamic trajectory planning algorithms, namely clustered GOP (C-GOP) and clustered particle swarm optimization (C-PSO), are proposed to overcome the above issue. The data collection efficiency is maximized by locating the optimal UAV hovering point for each serving MTCD cluster, which is dynamically adjusted with the UAV hovering position until all MTCDs are served. It is shown that the GOP is the optimal strategy for a small number of MTCDs concentrated in a small area. While for large number of MTCDs or task area, the clustered algorithms are more favorable from energy efficiency, complexity and scalability perspectives. |
doi_str_mv | 10.1109/TGCN.2022.3186841 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TGCN_2022_3186841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9810009</ieee_id><sourcerecordid>2739333040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-9536d8218728b5ff1367e55e05dc9da66841b063b28f0fdbbe89d670fbc8d0dd3</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhosoOOZ-gHgT8LrzJOlHcjm6OYU5vegEr0LaJKOzS2baMfrvbdkQr865eN73cJ4guMcwxRj4U77M1lMChEwpZgmL8FUwIlFKQxIBXP_bb4NJ0-wAgPAYJ5yOgq-F1X7bhbOT9BrNOyv3VYlyL3e6bJ3v0Ectra3sFhnn0Wb2GS6sLGqt0Fy2EmWurnuwchZVFu3f8gytdXty_ru5C26MrBs9ucxxsHle5NlLuHpfvmazVVgSTtuQxzRRjGCWElbExmCapDqONcSq5EomwzsFJLQgzIBRRaEZV0kKpiiZAqXoOHg89x68-znqphU7d_S2PylISjmlFCLoKXymSu-axmsjDr7aS98JDGKQKAaJYpAoLhL7zMM5U2mt_3jOcC-Q01895GxW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2739333040</pqid></control><display><type>article</type><title>Energy-Aware Dynamic Trajectory Planning for UAV-Enabled Data Collection in mMTC Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Shen, Lingfeng ; Wang, Ning ; Zhang, Di ; Chen, Jun ; Mu, Xiaomin ; Wong, Kon Max</creator><creatorcontrib>Shen, Lingfeng ; Wang, Ning ; Zhang, Di ; Chen, Jun ; Mu, Xiaomin ; Wong, Kon Max</creatorcontrib><description>A fundamental design problem for massive machine-type communication (mMTC) networks is efficient data collection from the machine-type communication devices (MTCDs), which is the subject of investigation in this paper. An unmanned aerial vehicle (UAV) being deployed to facilitate data collection from MTCDs is considered. Taking into account the limited energy for both the UAV and MTCDs, a problem of minimizing the total energy consumption subject to completion of the data collection tasks by planning the UAV trajectory is formulated. A Global Optimum (GOP) trajectory can be obtained for a UAV serving all the MTCDs simultaneously if the UAV's flying altitude is larger than <inline-formula> <tex-math notation="LaTeX">\sqrt {3} </tex-math></inline-formula> times its maximum service radius. However, communication energy efficiency drops as the UAV's altitude increases. Clustering-based service strategies and dynamic trajectory planning algorithms, namely clustered GOP (C-GOP) and clustered particle swarm optimization (C-PSO), are proposed to overcome the above issue. The data collection efficiency is maximized by locating the optimal UAV hovering point for each serving MTCD cluster, which is dynamically adjusted with the UAV hovering position until all MTCDs are served. It is shown that the GOP is the optimal strategy for a small number of MTCDs concentrated in a small area. While for large number of MTCDs or task area, the clustered algorithms are more favorable from energy efficiency, complexity and scalability perspectives.</description><identifier>ISSN: 2473-2400</identifier><identifier>EISSN: 2473-2400</identifier><identifier>DOI: 10.1109/TGCN.2022.3186841</identifier><identifier>CODEN: ITGCBM</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Altitude ; Autonomous aerial vehicles ; Clustering ; Communication ; Data collection ; Data models ; Dynamic trajectory planning ; Energy consumption ; Energy efficiency ; Energy management ; Hovering ; massive machine-type communications ; Particle swarm optimization ; Task analysis ; Trajectory ; Trajectory planning ; UAV-enabled data collection ; Unmanned aerial vehicles</subject><ispartof>IEEE transactions on green communications and networking, 2022-12, Vol.6 (4), p.1957-1971</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-9536d8218728b5ff1367e55e05dc9da66841b063b28f0fdbbe89d670fbc8d0dd3</citedby><cites>FETCH-LOGICAL-c293t-9536d8218728b5ff1367e55e05dc9da66841b063b28f0fdbbe89d670fbc8d0dd3</cites><orcidid>0000-0002-8084-9332 ; 0000-0001-7190-1621 ; 0000-0001-9403-3417</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9810009$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9810009$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shen, Lingfeng</creatorcontrib><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Zhang, Di</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><creatorcontrib>Mu, Xiaomin</creatorcontrib><creatorcontrib>Wong, Kon Max</creatorcontrib><title>Energy-Aware Dynamic Trajectory Planning for UAV-Enabled Data Collection in mMTC Networks</title><title>IEEE transactions on green communications and networking</title><addtitle>TGCN</addtitle><description>A fundamental design problem for massive machine-type communication (mMTC) networks is efficient data collection from the machine-type communication devices (MTCDs), which is the subject of investigation in this paper. An unmanned aerial vehicle (UAV) being deployed to facilitate data collection from MTCDs is considered. Taking into account the limited energy for both the UAV and MTCDs, a problem of minimizing the total energy consumption subject to completion of the data collection tasks by planning the UAV trajectory is formulated. A Global Optimum (GOP) trajectory can be obtained for a UAV serving all the MTCDs simultaneously if the UAV's flying altitude is larger than <inline-formula> <tex-math notation="LaTeX">\sqrt {3} </tex-math></inline-formula> times its maximum service radius. However, communication energy efficiency drops as the UAV's altitude increases. Clustering-based service strategies and dynamic trajectory planning algorithms, namely clustered GOP (C-GOP) and clustered particle swarm optimization (C-PSO), are proposed to overcome the above issue. The data collection efficiency is maximized by locating the optimal UAV hovering point for each serving MTCD cluster, which is dynamically adjusted with the UAV hovering position until all MTCDs are served. It is shown that the GOP is the optimal strategy for a small number of MTCDs concentrated in a small area. While for large number of MTCDs or task area, the clustered algorithms are more favorable from energy efficiency, complexity and scalability perspectives.</description><subject>Algorithms</subject><subject>Altitude</subject><subject>Autonomous aerial vehicles</subject><subject>Clustering</subject><subject>Communication</subject><subject>Data collection</subject><subject>Data models</subject><subject>Dynamic trajectory planning</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>Energy management</subject><subject>Hovering</subject><subject>massive machine-type communications</subject><subject>Particle swarm optimization</subject><subject>Task analysis</subject><subject>Trajectory</subject><subject>Trajectory planning</subject><subject>UAV-enabled data collection</subject><subject>Unmanned aerial vehicles</subject><issn>2473-2400</issn><issn>2473-2400</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1LwzAUhosoOOZ-gHgT8LrzJOlHcjm6OYU5vegEr0LaJKOzS2baMfrvbdkQr865eN73cJ4guMcwxRj4U77M1lMChEwpZgmL8FUwIlFKQxIBXP_bb4NJ0-wAgPAYJ5yOgq-F1X7bhbOT9BrNOyv3VYlyL3e6bJ3v0Ectra3sFhnn0Wb2GS6sLGqt0Fy2EmWurnuwchZVFu3f8gytdXty_ru5C26MrBs9ucxxsHle5NlLuHpfvmazVVgSTtuQxzRRjGCWElbExmCapDqONcSq5EomwzsFJLQgzIBRRaEZV0kKpiiZAqXoOHg89x68-znqphU7d_S2PylISjmlFCLoKXymSu-axmsjDr7aS98JDGKQKAaJYpAoLhL7zMM5U2mt_3jOcC-Q01895GxW</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Shen, Lingfeng</creator><creator>Wang, Ning</creator><creator>Zhang, Di</creator><creator>Chen, Jun</creator><creator>Mu, Xiaomin</creator><creator>Wong, Kon Max</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8084-9332</orcidid><orcidid>https://orcid.org/0000-0001-7190-1621</orcidid><orcidid>https://orcid.org/0000-0001-9403-3417</orcidid></search><sort><creationdate>20221201</creationdate><title>Energy-Aware Dynamic Trajectory Planning for UAV-Enabled Data Collection in mMTC Networks</title><author>Shen, Lingfeng ; Wang, Ning ; Zhang, Di ; Chen, Jun ; Mu, Xiaomin ; Wong, Kon Max</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-9536d8218728b5ff1367e55e05dc9da66841b063b28f0fdbbe89d670fbc8d0dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Altitude</topic><topic>Autonomous aerial vehicles</topic><topic>Clustering</topic><topic>Communication</topic><topic>Data collection</topic><topic>Data models</topic><topic>Dynamic trajectory planning</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>Energy management</topic><topic>Hovering</topic><topic>massive machine-type communications</topic><topic>Particle swarm optimization</topic><topic>Task analysis</topic><topic>Trajectory</topic><topic>Trajectory planning</topic><topic>UAV-enabled data collection</topic><topic>Unmanned aerial vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Shen, Lingfeng</creatorcontrib><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Zhang, Di</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><creatorcontrib>Mu, Xiaomin</creatorcontrib><creatorcontrib>Wong, Kon Max</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on green communications and networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shen, Lingfeng</au><au>Wang, Ning</au><au>Zhang, Di</au><au>Chen, Jun</au><au>Mu, Xiaomin</au><au>Wong, Kon Max</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy-Aware Dynamic Trajectory Planning for UAV-Enabled Data Collection in mMTC Networks</atitle><jtitle>IEEE transactions on green communications and networking</jtitle><stitle>TGCN</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>6</volume><issue>4</issue><spage>1957</spage><epage>1971</epage><pages>1957-1971</pages><issn>2473-2400</issn><eissn>2473-2400</eissn><coden>ITGCBM</coden><abstract>A fundamental design problem for massive machine-type communication (mMTC) networks is efficient data collection from the machine-type communication devices (MTCDs), which is the subject of investigation in this paper. An unmanned aerial vehicle (UAV) being deployed to facilitate data collection from MTCDs is considered. Taking into account the limited energy for both the UAV and MTCDs, a problem of minimizing the total energy consumption subject to completion of the data collection tasks by planning the UAV trajectory is formulated. A Global Optimum (GOP) trajectory can be obtained for a UAV serving all the MTCDs simultaneously if the UAV's flying altitude is larger than <inline-formula> <tex-math notation="LaTeX">\sqrt {3} </tex-math></inline-formula> times its maximum service radius. However, communication energy efficiency drops as the UAV's altitude increases. Clustering-based service strategies and dynamic trajectory planning algorithms, namely clustered GOP (C-GOP) and clustered particle swarm optimization (C-PSO), are proposed to overcome the above issue. The data collection efficiency is maximized by locating the optimal UAV hovering point for each serving MTCD cluster, which is dynamically adjusted with the UAV hovering position until all MTCDs are served. It is shown that the GOP is the optimal strategy for a small number of MTCDs concentrated in a small area. While for large number of MTCDs or task area, the clustered algorithms are more favorable from energy efficiency, complexity and scalability perspectives.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TGCN.2022.3186841</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-8084-9332</orcidid><orcidid>https://orcid.org/0000-0001-7190-1621</orcidid><orcidid>https://orcid.org/0000-0001-9403-3417</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2473-2400 |
ispartof | IEEE transactions on green communications and networking, 2022-12, Vol.6 (4), p.1957-1971 |
issn | 2473-2400 2473-2400 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TGCN_2022_3186841 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Altitude Autonomous aerial vehicles Clustering Communication Data collection Data models Dynamic trajectory planning Energy consumption Energy efficiency Energy management Hovering massive machine-type communications Particle swarm optimization Task analysis Trajectory Trajectory planning UAV-enabled data collection Unmanned aerial vehicles |
title | Energy-Aware Dynamic Trajectory Planning for UAV-Enabled Data Collection in mMTC Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A48%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy-Aware%20Dynamic%20Trajectory%20Planning%20for%20UAV-Enabled%20Data%20Collection%20in%20mMTC%20Networks&rft.jtitle=IEEE%20transactions%20on%20green%20communications%20and%20networking&rft.au=Shen,%20Lingfeng&rft.date=2022-12-01&rft.volume=6&rft.issue=4&rft.spage=1957&rft.epage=1971&rft.pages=1957-1971&rft.issn=2473-2400&rft.eissn=2473-2400&rft.coden=ITGCBM&rft_id=info:doi/10.1109/TGCN.2022.3186841&rft_dat=%3Cproquest_RIE%3E2739333040%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2739333040&rft_id=info:pmid/&rft_ieee_id=9810009&rfr_iscdi=true |