A Novel MIMO T-S Fuzzy Modeling for Prediction of Blast Furnace Molten Iron Quality With Missing Outputs
For complex and difficult-to-control blast furnace systems with hour-level delay, accurate prediction of molten iron quality plays a very important role in guaranteeing the stable and smooth operation. Recently, some data-driven multi-input multi-output (MIMO) modeling methods have been proposed to...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on fuzzy systems 2021-06, Vol.29 (6), p.1654-1666 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1666 |
---|---|
container_issue | 6 |
container_start_page | 1654 |
container_title | IEEE transactions on fuzzy systems |
container_volume | 29 |
creator | Li, Junpeng Hua, Changchun Yang, Yana Guan, Xinping |
description | For complex and difficult-to-control blast furnace systems with hour-level delay, accurate prediction of molten iron quality plays a very important role in guaranteeing the stable and smooth operation. Recently, some data-driven multi-input multi-output (MIMO) modeling methods have been proposed to model multiple molten iron quality indicators including molten iron temperature, silicon content ([Si]), phosphorus content ([P]), and sulfur content ([S]). However, those data-driven MIMO models ignore the interindicator correlation, which leads to the suboptimal model for the estimation of multiple molten iron quality indicators. Moreover, the above methods do not pay attention to the molten iron quality indicators missing issue, which often occurs on blast furnace. To address the above two issues, this article proposed a novel MIMO Takagi-Sugeno (T-S) fuzzy model by utilizing an output transfer matrix. In the novel method, the interindicator correlation was explicitly modeled by a low-rank learning of the correlation matrix that overcame the great challenge of jointly determining the fuzzy rules of the MIMO T-S model and the interindicator correlation. Moreover, a new complete complementary matrix can be obtained by the output transfer from the original incomplete matrix resulting from molten iron quality indicators missing issues. For the corresponding optimization problem, an effective alternating optimization algorithm is presented, and the convergence of the optimization algorithm is also rigorously proved. The validity of the proposed method is verified by comparison with some related methods on real blast furnace data. |
doi_str_mv | 10.1109/TFUZZ.2020.2983667 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TFUZZ_2020_2983667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9052465</ieee_id><sourcerecordid>2536030723</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-9fa7cf2404e9f6d6ee47e568e4fe213ae5f3f7cd2faca3c31bea434bc37cd5383</originalsourceid><addsrcrecordid>eNo9kFFLwzAQx4soOKdfQF8CPncmuTRtH6c4HaxOcUPYS8nSi-uo60xSYfv0tm74dMfd738cvyC4ZnTAGE3vZqP5YjHglNMBTxOQMj4JeiwVLKQUxGnbUwmhjKk8Dy6cW1PKRMSSXrAakpf6ByuSjbMpmYXvZNTs9zuS1QVW5eaTmNqSV4tFqX1Zb0htyH2lnG8xu1EaW7DyuCFj2y7fGlWVfkc-Sr8iWelcd2Da-G3j3WVwZlTl8OpY-8F89Dh7eA4n06fxw3ASaoDUh6lRsTZcUIGpkYVEFDFGMkFhkDNQGBkwsS64UVqBBrZEJUAsNbTDCBLoB7eHu1tbfzfofL6uu1crl_MIJAUac2gpfqC0rZ2zaPKtLb-U3eWM5p3R_M9o3hnNj0bb0M0hVCLifyClERcygl8fsHLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536030723</pqid></control><display><type>article</type><title>A Novel MIMO T-S Fuzzy Modeling for Prediction of Blast Furnace Molten Iron Quality With Missing Outputs</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Junpeng ; Hua, Changchun ; Yang, Yana ; Guan, Xinping</creator><creatorcontrib>Li, Junpeng ; Hua, Changchun ; Yang, Yana ; Guan, Xinping</creatorcontrib><description>For complex and difficult-to-control blast furnace systems with hour-level delay, accurate prediction of molten iron quality plays a very important role in guaranteeing the stable and smooth operation. Recently, some data-driven multi-input multi-output (MIMO) modeling methods have been proposed to model multiple molten iron quality indicators including molten iron temperature, silicon content ([Si]), phosphorus content ([P]), and sulfur content ([S]). However, those data-driven MIMO models ignore the interindicator correlation, which leads to the suboptimal model for the estimation of multiple molten iron quality indicators. Moreover, the above methods do not pay attention to the molten iron quality indicators missing issue, which often occurs on blast furnace. To address the above two issues, this article proposed a novel MIMO Takagi-Sugeno (T-S) fuzzy model by utilizing an output transfer matrix. In the novel method, the interindicator correlation was explicitly modeled by a low-rank learning of the correlation matrix that overcame the great challenge of jointly determining the fuzzy rules of the MIMO T-S model and the interindicator correlation. Moreover, a new complete complementary matrix can be obtained by the output transfer from the original incomplete matrix resulting from molten iron quality indicators missing issues. For the corresponding optimization problem, an effective alternating optimization algorithm is presented, and the convergence of the optimization algorithm is also rigorously proved. The validity of the proposed method is verified by comparison with some related methods on real blast furnace data.</description><identifier>ISSN: 1063-6706</identifier><identifier>EISSN: 1941-0034</identifier><identifier>DOI: 10.1109/TFUZZ.2020.2983667</identifier><identifier>CODEN: IEFSEV</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Blast furnace ; Blast furnace practice ; Blast furnaces ; Correlation ; Correlation analysis ; Indicators ; Iron ; MIMO (control systems) ; MIMO communication ; Modelling ; molten iron quality ; multi-input multi-output (MIMO) ; Neural networks ; Optimization ; Optimization algorithms ; Predator prey systems ; Silicon ; silicon content ; Sulfur content ; Takagi–Sugeno (T–S) fuzzy model ; Transfer matrices</subject><ispartof>IEEE transactions on fuzzy systems, 2021-06, Vol.29 (6), p.1654-1666</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-9fa7cf2404e9f6d6ee47e568e4fe213ae5f3f7cd2faca3c31bea434bc37cd5383</citedby><cites>FETCH-LOGICAL-c339t-9fa7cf2404e9f6d6ee47e568e4fe213ae5f3f7cd2faca3c31bea434bc37cd5383</cites><orcidid>0000-0001-6006-8566 ; 0000-0003-4028-2703 ; 0000-0001-6311-2112 ; 0000-0003-1858-8538</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9052465$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9052465$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Junpeng</creatorcontrib><creatorcontrib>Hua, Changchun</creatorcontrib><creatorcontrib>Yang, Yana</creatorcontrib><creatorcontrib>Guan, Xinping</creatorcontrib><title>A Novel MIMO T-S Fuzzy Modeling for Prediction of Blast Furnace Molten Iron Quality With Missing Outputs</title><title>IEEE transactions on fuzzy systems</title><addtitle>TFUZZ</addtitle><description>For complex and difficult-to-control blast furnace systems with hour-level delay, accurate prediction of molten iron quality plays a very important role in guaranteeing the stable and smooth operation. Recently, some data-driven multi-input multi-output (MIMO) modeling methods have been proposed to model multiple molten iron quality indicators including molten iron temperature, silicon content ([Si]), phosphorus content ([P]), and sulfur content ([S]). However, those data-driven MIMO models ignore the interindicator correlation, which leads to the suboptimal model for the estimation of multiple molten iron quality indicators. Moreover, the above methods do not pay attention to the molten iron quality indicators missing issue, which often occurs on blast furnace. To address the above two issues, this article proposed a novel MIMO Takagi-Sugeno (T-S) fuzzy model by utilizing an output transfer matrix. In the novel method, the interindicator correlation was explicitly modeled by a low-rank learning of the correlation matrix that overcame the great challenge of jointly determining the fuzzy rules of the MIMO T-S model and the interindicator correlation. Moreover, a new complete complementary matrix can be obtained by the output transfer from the original incomplete matrix resulting from molten iron quality indicators missing issues. For the corresponding optimization problem, an effective alternating optimization algorithm is presented, and the convergence of the optimization algorithm is also rigorously proved. The validity of the proposed method is verified by comparison with some related methods on real blast furnace data.</description><subject>Algorithms</subject><subject>Blast furnace</subject><subject>Blast furnace practice</subject><subject>Blast furnaces</subject><subject>Correlation</subject><subject>Correlation analysis</subject><subject>Indicators</subject><subject>Iron</subject><subject>MIMO (control systems)</subject><subject>MIMO communication</subject><subject>Modelling</subject><subject>molten iron quality</subject><subject>multi-input multi-output (MIMO)</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Predator prey systems</subject><subject>Silicon</subject><subject>silicon content</subject><subject>Sulfur content</subject><subject>Takagi–Sugeno (T–S) fuzzy model</subject><subject>Transfer matrices</subject><issn>1063-6706</issn><issn>1941-0034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFLwzAQx4soOKdfQF8CPncmuTRtH6c4HaxOcUPYS8nSi-uo60xSYfv0tm74dMfd738cvyC4ZnTAGE3vZqP5YjHglNMBTxOQMj4JeiwVLKQUxGnbUwmhjKk8Dy6cW1PKRMSSXrAakpf6ByuSjbMpmYXvZNTs9zuS1QVW5eaTmNqSV4tFqX1Zb0htyH2lnG8xu1EaW7DyuCFj2y7fGlWVfkc-Sr8iWelcd2Da-G3j3WVwZlTl8OpY-8F89Dh7eA4n06fxw3ASaoDUh6lRsTZcUIGpkYVEFDFGMkFhkDNQGBkwsS64UVqBBrZEJUAsNbTDCBLoB7eHu1tbfzfofL6uu1crl_MIJAUac2gpfqC0rZ2zaPKtLb-U3eWM5p3R_M9o3hnNj0bb0M0hVCLifyClERcygl8fsHLQ</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Li, Junpeng</creator><creator>Hua, Changchun</creator><creator>Yang, Yana</creator><creator>Guan, Xinping</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6006-8566</orcidid><orcidid>https://orcid.org/0000-0003-4028-2703</orcidid><orcidid>https://orcid.org/0000-0001-6311-2112</orcidid><orcidid>https://orcid.org/0000-0003-1858-8538</orcidid></search><sort><creationdate>20210601</creationdate><title>A Novel MIMO T-S Fuzzy Modeling for Prediction of Blast Furnace Molten Iron Quality With Missing Outputs</title><author>Li, Junpeng ; Hua, Changchun ; Yang, Yana ; Guan, Xinping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-9fa7cf2404e9f6d6ee47e568e4fe213ae5f3f7cd2faca3c31bea434bc37cd5383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Blast furnace</topic><topic>Blast furnace practice</topic><topic>Blast furnaces</topic><topic>Correlation</topic><topic>Correlation analysis</topic><topic>Indicators</topic><topic>Iron</topic><topic>MIMO (control systems)</topic><topic>MIMO communication</topic><topic>Modelling</topic><topic>molten iron quality</topic><topic>multi-input multi-output (MIMO)</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Predator prey systems</topic><topic>Silicon</topic><topic>silicon content</topic><topic>Sulfur content</topic><topic>Takagi–Sugeno (T–S) fuzzy model</topic><topic>Transfer matrices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Junpeng</creatorcontrib><creatorcontrib>Hua, Changchun</creatorcontrib><creatorcontrib>Yang, Yana</creatorcontrib><creatorcontrib>Guan, Xinping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Junpeng</au><au>Hua, Changchun</au><au>Yang, Yana</au><au>Guan, Xinping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel MIMO T-S Fuzzy Modeling for Prediction of Blast Furnace Molten Iron Quality With Missing Outputs</atitle><jtitle>IEEE transactions on fuzzy systems</jtitle><stitle>TFUZZ</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>29</volume><issue>6</issue><spage>1654</spage><epage>1666</epage><pages>1654-1666</pages><issn>1063-6706</issn><eissn>1941-0034</eissn><coden>IEFSEV</coden><abstract>For complex and difficult-to-control blast furnace systems with hour-level delay, accurate prediction of molten iron quality plays a very important role in guaranteeing the stable and smooth operation. Recently, some data-driven multi-input multi-output (MIMO) modeling methods have been proposed to model multiple molten iron quality indicators including molten iron temperature, silicon content ([Si]), phosphorus content ([P]), and sulfur content ([S]). However, those data-driven MIMO models ignore the interindicator correlation, which leads to the suboptimal model for the estimation of multiple molten iron quality indicators. Moreover, the above methods do not pay attention to the molten iron quality indicators missing issue, which often occurs on blast furnace. To address the above two issues, this article proposed a novel MIMO Takagi-Sugeno (T-S) fuzzy model by utilizing an output transfer matrix. In the novel method, the interindicator correlation was explicitly modeled by a low-rank learning of the correlation matrix that overcame the great challenge of jointly determining the fuzzy rules of the MIMO T-S model and the interindicator correlation. Moreover, a new complete complementary matrix can be obtained by the output transfer from the original incomplete matrix resulting from molten iron quality indicators missing issues. For the corresponding optimization problem, an effective alternating optimization algorithm is presented, and the convergence of the optimization algorithm is also rigorously proved. The validity of the proposed method is verified by comparison with some related methods on real blast furnace data.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TFUZZ.2020.2983667</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6006-8566</orcidid><orcidid>https://orcid.org/0000-0003-4028-2703</orcidid><orcidid>https://orcid.org/0000-0001-6311-2112</orcidid><orcidid>https://orcid.org/0000-0003-1858-8538</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6706 |
ispartof | IEEE transactions on fuzzy systems, 2021-06, Vol.29 (6), p.1654-1666 |
issn | 1063-6706 1941-0034 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TFUZZ_2020_2983667 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Blast furnace Blast furnace practice Blast furnaces Correlation Correlation analysis Indicators Iron MIMO (control systems) MIMO communication Modelling molten iron quality multi-input multi-output (MIMO) Neural networks Optimization Optimization algorithms Predator prey systems Silicon silicon content Sulfur content Takagi–Sugeno (T–S) fuzzy model Transfer matrices |
title | A Novel MIMO T-S Fuzzy Modeling for Prediction of Blast Furnace Molten Iron Quality With Missing Outputs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A29%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20MIMO%20T-S%20Fuzzy%20Modeling%20for%20Prediction%20of%20Blast%20Furnace%20Molten%20Iron%20Quality%20With%20Missing%20Outputs&rft.jtitle=IEEE%20transactions%20on%20fuzzy%20systems&rft.au=Li,%20Junpeng&rft.date=2021-06-01&rft.volume=29&rft.issue=6&rft.spage=1654&rft.epage=1666&rft.pages=1654-1666&rft.issn=1063-6706&rft.eissn=1941-0034&rft.coden=IEFSEV&rft_id=info:doi/10.1109/TFUZZ.2020.2983667&rft_dat=%3Cproquest_RIE%3E2536030723%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2536030723&rft_id=info:pmid/&rft_ieee_id=9052465&rfr_iscdi=true |