Multistability for Almost-Periodic Solutions of Takagi-Sugeno Fuzzy Neural Networks With Nonmonotonic Discontinuous Activation Functions and Time-Varying Delays
This article investigates the problem of multistability of almost-periodic solutions of Takagi-Sugeno fuzzy neural networks with nonmonotonic discontinuous activation functions and time-varying delays. Based on the geometrical properties of nonmonotonic activation functions, by using the Ascoli-Arze...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on fuzzy systems 2021-02, Vol.29 (2), p.400-414 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 414 |
---|---|
container_issue | 2 |
container_start_page | 400 |
container_title | IEEE transactions on fuzzy systems |
container_volume | 29 |
creator | Wan, Peng Sun, Dihua Zhao, Min Huang, Shuai |
description | This article investigates the problem of multistability of almost-periodic solutions of Takagi-Sugeno fuzzy neural networks with nonmonotonic discontinuous activation functions and time-varying delays. Based on the geometrical properties of nonmonotonic activation functions, by using the Ascoli-Arzela theorem and the inequality techniques, it is demonstrated that under some reasonable conditions, the addressed networks have a locally exponentially stable almost-periodic solution in some hyperrectangular regions. We also estimate the attraction basins of the locally stable almost-periodic solutions, which indicates that the attraction basins of the locally exponentially stable almost-periodic solution can be larger than original hyperrectangular regions. These results, which include boundedness, globally attractivity, multiple stability, and attraction basins, generalize and improve the earlier publications, and can be extended to monostability and multistability of Takagi-Sugeno fuzzy neural networks with nonmonotonic discontinuous activation functions. Finally, several numerical examples are given to show the feasibility, the effectiveness, and the merits of the theoretical results. |
doi_str_mv | 10.1109/TFUZZ.2019.2955886 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TFUZZ_2019_2955886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8913623</ieee_id><sourcerecordid>2486592298</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-7a7e387462fbd44432896fa7a242cc9b119f76378401cda78af65f2b45224d113</originalsourceid><addsrcrecordid>eNo9kc1OGzEUhUeolaC0L9BuLLGe1H_jsZcRkBYJaCVCK7EZOR47NUx8qX-KwtP0UXEa1NW5i3O-e69O03wkeEYIVp-Xi9u7uxnFRM2o6jopxUFzRBQnLcaMv6kzFqwVPRaHzbuU7jEmvCPyqPl7VabsU9YrP_m8RQ4imk8bSLn9bqOH0Rt0A1PJHkJC4NBSP-i1b2_K2gZAi_L8vEXXtkQ9VclPEB8S-unzL3QNYQMBMoSKOPPJQMg-FCgJzU32f_QOWQHB7Nk6jGjpN7b9oePWhzU6s5PepvfNW6enZD-86nFzuzhfnn5tL799uTidX7amPpzbXveWyZ4L6lYj55xRqYTTvaacGqNWhCjXC9ZLjokZdS-1E52jK95RykdC2HFzsuc-RvhdbMrDPZQY6sqBcik6RamS1UX3LhMhpWjd8Bj9ph48EDzsmhj-NTHsmhhem6ihT_uQt9b-D0hFmKCMvQCZ5Yi2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486592298</pqid></control><display><type>article</type><title>Multistability for Almost-Periodic Solutions of Takagi-Sugeno Fuzzy Neural Networks With Nonmonotonic Discontinuous Activation Functions and Time-Varying Delays</title><source>IEEE Electronic Library (IEL)</source><creator>Wan, Peng ; Sun, Dihua ; Zhao, Min ; Huang, Shuai</creator><creatorcontrib>Wan, Peng ; Sun, Dihua ; Zhao, Min ; Huang, Shuai</creatorcontrib><description>This article investigates the problem of multistability of almost-periodic solutions of Takagi-Sugeno fuzzy neural networks with nonmonotonic discontinuous activation functions and time-varying delays. Based on the geometrical properties of nonmonotonic activation functions, by using the Ascoli-Arzela theorem and the inequality techniques, it is demonstrated that under some reasonable conditions, the addressed networks have a locally exponentially stable almost-periodic solution in some hyperrectangular regions. We also estimate the attraction basins of the locally stable almost-periodic solutions, which indicates that the attraction basins of the locally exponentially stable almost-periodic solution can be larger than original hyperrectangular regions. These results, which include boundedness, globally attractivity, multiple stability, and attraction basins, generalize and improve the earlier publications, and can be extended to monostability and multistability of Takagi-Sugeno fuzzy neural networks with nonmonotonic discontinuous activation functions. Finally, several numerical examples are given to show the feasibility, the effectiveness, and the merits of the theoretical results.</description><identifier>ISSN: 1063-6706</identifier><identifier>EISSN: 1941-0034</identifier><identifier>DOI: 10.1109/TFUZZ.2019.2955886</identifier><identifier>CODEN: IEFSEV</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Almost-periodic solution ; Artificial neural networks ; Attraction ; attraction basin ; Basins ; Control theory ; Delays ; Fuzzy logic ; Fuzzy neural networks ; multistability ; Neural networks ; nonmonotonic discontinuous activation function ; Stability analysis ; Takagi-Sugeno model ; Takagi–Sugeno fuzzy neural networks</subject><ispartof>IEEE transactions on fuzzy systems, 2021-02, Vol.29 (2), p.400-414</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-7a7e387462fbd44432896fa7a242cc9b119f76378401cda78af65f2b45224d113</citedby><cites>FETCH-LOGICAL-c295t-7a7e387462fbd44432896fa7a242cc9b119f76378401cda78af65f2b45224d113</cites><orcidid>0000-0003-1648-679X ; 0000-0002-3274-1319 ; 0000-0001-6559-1495</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8913623$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8913623$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wan, Peng</creatorcontrib><creatorcontrib>Sun, Dihua</creatorcontrib><creatorcontrib>Zhao, Min</creatorcontrib><creatorcontrib>Huang, Shuai</creatorcontrib><title>Multistability for Almost-Periodic Solutions of Takagi-Sugeno Fuzzy Neural Networks With Nonmonotonic Discontinuous Activation Functions and Time-Varying Delays</title><title>IEEE transactions on fuzzy systems</title><addtitle>TFUZZ</addtitle><description>This article investigates the problem of multistability of almost-periodic solutions of Takagi-Sugeno fuzzy neural networks with nonmonotonic discontinuous activation functions and time-varying delays. Based on the geometrical properties of nonmonotonic activation functions, by using the Ascoli-Arzela theorem and the inequality techniques, it is demonstrated that under some reasonable conditions, the addressed networks have a locally exponentially stable almost-periodic solution in some hyperrectangular regions. We also estimate the attraction basins of the locally stable almost-periodic solutions, which indicates that the attraction basins of the locally exponentially stable almost-periodic solution can be larger than original hyperrectangular regions. These results, which include boundedness, globally attractivity, multiple stability, and attraction basins, generalize and improve the earlier publications, and can be extended to monostability and multistability of Takagi-Sugeno fuzzy neural networks with nonmonotonic discontinuous activation functions. Finally, several numerical examples are given to show the feasibility, the effectiveness, and the merits of the theoretical results.</description><subject>Almost-periodic solution</subject><subject>Artificial neural networks</subject><subject>Attraction</subject><subject>attraction basin</subject><subject>Basins</subject><subject>Control theory</subject><subject>Delays</subject><subject>Fuzzy logic</subject><subject>Fuzzy neural networks</subject><subject>multistability</subject><subject>Neural networks</subject><subject>nonmonotonic discontinuous activation function</subject><subject>Stability analysis</subject><subject>Takagi-Sugeno model</subject><subject>Takagi–Sugeno fuzzy neural networks</subject><issn>1063-6706</issn><issn>1941-0034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kc1OGzEUhUeolaC0L9BuLLGe1H_jsZcRkBYJaCVCK7EZOR47NUx8qX-KwtP0UXEa1NW5i3O-e69O03wkeEYIVp-Xi9u7uxnFRM2o6jopxUFzRBQnLcaMv6kzFqwVPRaHzbuU7jEmvCPyqPl7VabsU9YrP_m8RQ4imk8bSLn9bqOH0Rt0A1PJHkJC4NBSP-i1b2_K2gZAi_L8vEXXtkQ9VclPEB8S-unzL3QNYQMBMoSKOPPJQMg-FCgJzU32f_QOWQHB7Nk6jGjpN7b9oePWhzU6s5PepvfNW6enZD-86nFzuzhfnn5tL799uTidX7amPpzbXveWyZ4L6lYj55xRqYTTvaacGqNWhCjXC9ZLjokZdS-1E52jK95RykdC2HFzsuc-RvhdbMrDPZQY6sqBcik6RamS1UX3LhMhpWjd8Bj9ph48EDzsmhj-NTHsmhhem6ihT_uQt9b-D0hFmKCMvQCZ5Yi2</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Wan, Peng</creator><creator>Sun, Dihua</creator><creator>Zhao, Min</creator><creator>Huang, Shuai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1648-679X</orcidid><orcidid>https://orcid.org/0000-0002-3274-1319</orcidid><orcidid>https://orcid.org/0000-0001-6559-1495</orcidid></search><sort><creationdate>20210201</creationdate><title>Multistability for Almost-Periodic Solutions of Takagi-Sugeno Fuzzy Neural Networks With Nonmonotonic Discontinuous Activation Functions and Time-Varying Delays</title><author>Wan, Peng ; Sun, Dihua ; Zhao, Min ; Huang, Shuai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-7a7e387462fbd44432896fa7a242cc9b119f76378401cda78af65f2b45224d113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Almost-periodic solution</topic><topic>Artificial neural networks</topic><topic>Attraction</topic><topic>attraction basin</topic><topic>Basins</topic><topic>Control theory</topic><topic>Delays</topic><topic>Fuzzy logic</topic><topic>Fuzzy neural networks</topic><topic>multistability</topic><topic>Neural networks</topic><topic>nonmonotonic discontinuous activation function</topic><topic>Stability analysis</topic><topic>Takagi-Sugeno model</topic><topic>Takagi–Sugeno fuzzy neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wan, Peng</creatorcontrib><creatorcontrib>Sun, Dihua</creatorcontrib><creatorcontrib>Zhao, Min</creatorcontrib><creatorcontrib>Huang, Shuai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wan, Peng</au><au>Sun, Dihua</au><au>Zhao, Min</au><au>Huang, Shuai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multistability for Almost-Periodic Solutions of Takagi-Sugeno Fuzzy Neural Networks With Nonmonotonic Discontinuous Activation Functions and Time-Varying Delays</atitle><jtitle>IEEE transactions on fuzzy systems</jtitle><stitle>TFUZZ</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>29</volume><issue>2</issue><spage>400</spage><epage>414</epage><pages>400-414</pages><issn>1063-6706</issn><eissn>1941-0034</eissn><coden>IEFSEV</coden><abstract>This article investigates the problem of multistability of almost-periodic solutions of Takagi-Sugeno fuzzy neural networks with nonmonotonic discontinuous activation functions and time-varying delays. Based on the geometrical properties of nonmonotonic activation functions, by using the Ascoli-Arzela theorem and the inequality techniques, it is demonstrated that under some reasonable conditions, the addressed networks have a locally exponentially stable almost-periodic solution in some hyperrectangular regions. We also estimate the attraction basins of the locally stable almost-periodic solutions, which indicates that the attraction basins of the locally exponentially stable almost-periodic solution can be larger than original hyperrectangular regions. These results, which include boundedness, globally attractivity, multiple stability, and attraction basins, generalize and improve the earlier publications, and can be extended to monostability and multistability of Takagi-Sugeno fuzzy neural networks with nonmonotonic discontinuous activation functions. Finally, several numerical examples are given to show the feasibility, the effectiveness, and the merits of the theoretical results.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TFUZZ.2019.2955886</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1648-679X</orcidid><orcidid>https://orcid.org/0000-0002-3274-1319</orcidid><orcidid>https://orcid.org/0000-0001-6559-1495</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6706 |
ispartof | IEEE transactions on fuzzy systems, 2021-02, Vol.29 (2), p.400-414 |
issn | 1063-6706 1941-0034 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TFUZZ_2019_2955886 |
source | IEEE Electronic Library (IEL) |
subjects | Almost-periodic solution Artificial neural networks Attraction attraction basin Basins Control theory Delays Fuzzy logic Fuzzy neural networks multistability Neural networks nonmonotonic discontinuous activation function Stability analysis Takagi-Sugeno model Takagi–Sugeno fuzzy neural networks |
title | Multistability for Almost-Periodic Solutions of Takagi-Sugeno Fuzzy Neural Networks With Nonmonotonic Discontinuous Activation Functions and Time-Varying Delays |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T11%3A22%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multistability%20for%20Almost-Periodic%20Solutions%20of%20Takagi-Sugeno%20Fuzzy%20Neural%20Networks%20With%20Nonmonotonic%20Discontinuous%20Activation%20Functions%20and%20Time-Varying%20Delays&rft.jtitle=IEEE%20transactions%20on%20fuzzy%20systems&rft.au=Wan,%20Peng&rft.date=2021-02-01&rft.volume=29&rft.issue=2&rft.spage=400&rft.epage=414&rft.pages=400-414&rft.issn=1063-6706&rft.eissn=1941-0034&rft.coden=IEFSEV&rft_id=info:doi/10.1109/TFUZZ.2019.2955886&rft_dat=%3Cproquest_RIE%3E2486592298%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2486592298&rft_id=info:pmid/&rft_ieee_id=8913623&rfr_iscdi=true |