Multistability for Almost-Periodic Solutions of Takagi-Sugeno Fuzzy Neural Networks With Nonmonotonic Discontinuous Activation Functions and Time-Varying Delays

This article investigates the problem of multistability of almost-periodic solutions of Takagi-Sugeno fuzzy neural networks with nonmonotonic discontinuous activation functions and time-varying delays. Based on the geometrical properties of nonmonotonic activation functions, by using the Ascoli-Arze...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on fuzzy systems 2021-02, Vol.29 (2), p.400-414
Hauptverfasser: Wan, Peng, Sun, Dihua, Zhao, Min, Huang, Shuai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 414
container_issue 2
container_start_page 400
container_title IEEE transactions on fuzzy systems
container_volume 29
creator Wan, Peng
Sun, Dihua
Zhao, Min
Huang, Shuai
description This article investigates the problem of multistability of almost-periodic solutions of Takagi-Sugeno fuzzy neural networks with nonmonotonic discontinuous activation functions and time-varying delays. Based on the geometrical properties of nonmonotonic activation functions, by using the Ascoli-Arzela theorem and the inequality techniques, it is demonstrated that under some reasonable conditions, the addressed networks have a locally exponentially stable almost-periodic solution in some hyperrectangular regions. We also estimate the attraction basins of the locally stable almost-periodic solutions, which indicates that the attraction basins of the locally exponentially stable almost-periodic solution can be larger than original hyperrectangular regions. These results, which include boundedness, globally attractivity, multiple stability, and attraction basins, generalize and improve the earlier publications, and can be extended to monostability and multistability of Takagi-Sugeno fuzzy neural networks with nonmonotonic discontinuous activation functions. Finally, several numerical examples are given to show the feasibility, the effectiveness, and the merits of the theoretical results.
doi_str_mv 10.1109/TFUZZ.2019.2955886
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TFUZZ_2019_2955886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8913623</ieee_id><sourcerecordid>2486592298</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-7a7e387462fbd44432896fa7a242cc9b119f76378401cda78af65f2b45224d113</originalsourceid><addsrcrecordid>eNo9kc1OGzEUhUeolaC0L9BuLLGe1H_jsZcRkBYJaCVCK7EZOR47NUx8qX-KwtP0UXEa1NW5i3O-e69O03wkeEYIVp-Xi9u7uxnFRM2o6jopxUFzRBQnLcaMv6kzFqwVPRaHzbuU7jEmvCPyqPl7VabsU9YrP_m8RQ4imk8bSLn9bqOH0Rt0A1PJHkJC4NBSP-i1b2_K2gZAi_L8vEXXtkQ9VclPEB8S-unzL3QNYQMBMoSKOPPJQMg-FCgJzU32f_QOWQHB7Nk6jGjpN7b9oePWhzU6s5PepvfNW6enZD-86nFzuzhfnn5tL799uTidX7amPpzbXveWyZ4L6lYj55xRqYTTvaacGqNWhCjXC9ZLjokZdS-1E52jK95RykdC2HFzsuc-RvhdbMrDPZQY6sqBcik6RamS1UX3LhMhpWjd8Bj9ph48EDzsmhj-NTHsmhhem6ihT_uQt9b-D0hFmKCMvQCZ5Yi2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486592298</pqid></control><display><type>article</type><title>Multistability for Almost-Periodic Solutions of Takagi-Sugeno Fuzzy Neural Networks With Nonmonotonic Discontinuous Activation Functions and Time-Varying Delays</title><source>IEEE Electronic Library (IEL)</source><creator>Wan, Peng ; Sun, Dihua ; Zhao, Min ; Huang, Shuai</creator><creatorcontrib>Wan, Peng ; Sun, Dihua ; Zhao, Min ; Huang, Shuai</creatorcontrib><description>This article investigates the problem of multistability of almost-periodic solutions of Takagi-Sugeno fuzzy neural networks with nonmonotonic discontinuous activation functions and time-varying delays. Based on the geometrical properties of nonmonotonic activation functions, by using the Ascoli-Arzela theorem and the inequality techniques, it is demonstrated that under some reasonable conditions, the addressed networks have a locally exponentially stable almost-periodic solution in some hyperrectangular regions. We also estimate the attraction basins of the locally stable almost-periodic solutions, which indicates that the attraction basins of the locally exponentially stable almost-periodic solution can be larger than original hyperrectangular regions. These results, which include boundedness, globally attractivity, multiple stability, and attraction basins, generalize and improve the earlier publications, and can be extended to monostability and multistability of Takagi-Sugeno fuzzy neural networks with nonmonotonic discontinuous activation functions. Finally, several numerical examples are given to show the feasibility, the effectiveness, and the merits of the theoretical results.</description><identifier>ISSN: 1063-6706</identifier><identifier>EISSN: 1941-0034</identifier><identifier>DOI: 10.1109/TFUZZ.2019.2955886</identifier><identifier>CODEN: IEFSEV</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Almost-periodic solution ; Artificial neural networks ; Attraction ; attraction basin ; Basins ; Control theory ; Delays ; Fuzzy logic ; Fuzzy neural networks ; multistability ; Neural networks ; nonmonotonic discontinuous activation function ; Stability analysis ; Takagi-Sugeno model ; Takagi–Sugeno fuzzy neural networks</subject><ispartof>IEEE transactions on fuzzy systems, 2021-02, Vol.29 (2), p.400-414</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-7a7e387462fbd44432896fa7a242cc9b119f76378401cda78af65f2b45224d113</citedby><cites>FETCH-LOGICAL-c295t-7a7e387462fbd44432896fa7a242cc9b119f76378401cda78af65f2b45224d113</cites><orcidid>0000-0003-1648-679X ; 0000-0002-3274-1319 ; 0000-0001-6559-1495</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8913623$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8913623$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wan, Peng</creatorcontrib><creatorcontrib>Sun, Dihua</creatorcontrib><creatorcontrib>Zhao, Min</creatorcontrib><creatorcontrib>Huang, Shuai</creatorcontrib><title>Multistability for Almost-Periodic Solutions of Takagi-Sugeno Fuzzy Neural Networks With Nonmonotonic Discontinuous Activation Functions and Time-Varying Delays</title><title>IEEE transactions on fuzzy systems</title><addtitle>TFUZZ</addtitle><description>This article investigates the problem of multistability of almost-periodic solutions of Takagi-Sugeno fuzzy neural networks with nonmonotonic discontinuous activation functions and time-varying delays. Based on the geometrical properties of nonmonotonic activation functions, by using the Ascoli-Arzela theorem and the inequality techniques, it is demonstrated that under some reasonable conditions, the addressed networks have a locally exponentially stable almost-periodic solution in some hyperrectangular regions. We also estimate the attraction basins of the locally stable almost-periodic solutions, which indicates that the attraction basins of the locally exponentially stable almost-periodic solution can be larger than original hyperrectangular regions. These results, which include boundedness, globally attractivity, multiple stability, and attraction basins, generalize and improve the earlier publications, and can be extended to monostability and multistability of Takagi-Sugeno fuzzy neural networks with nonmonotonic discontinuous activation functions. Finally, several numerical examples are given to show the feasibility, the effectiveness, and the merits of the theoretical results.</description><subject>Almost-periodic solution</subject><subject>Artificial neural networks</subject><subject>Attraction</subject><subject>attraction basin</subject><subject>Basins</subject><subject>Control theory</subject><subject>Delays</subject><subject>Fuzzy logic</subject><subject>Fuzzy neural networks</subject><subject>multistability</subject><subject>Neural networks</subject><subject>nonmonotonic discontinuous activation function</subject><subject>Stability analysis</subject><subject>Takagi-Sugeno model</subject><subject>Takagi–Sugeno fuzzy neural networks</subject><issn>1063-6706</issn><issn>1941-0034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kc1OGzEUhUeolaC0L9BuLLGe1H_jsZcRkBYJaCVCK7EZOR47NUx8qX-KwtP0UXEa1NW5i3O-e69O03wkeEYIVp-Xi9u7uxnFRM2o6jopxUFzRBQnLcaMv6kzFqwVPRaHzbuU7jEmvCPyqPl7VabsU9YrP_m8RQ4imk8bSLn9bqOH0Rt0A1PJHkJC4NBSP-i1b2_K2gZAi_L8vEXXtkQ9VclPEB8S-unzL3QNYQMBMoSKOPPJQMg-FCgJzU32f_QOWQHB7Nk6jGjpN7b9oePWhzU6s5PepvfNW6enZD-86nFzuzhfnn5tL799uTidX7amPpzbXveWyZ4L6lYj55xRqYTTvaacGqNWhCjXC9ZLjokZdS-1E52jK95RykdC2HFzsuc-RvhdbMrDPZQY6sqBcik6RamS1UX3LhMhpWjd8Bj9ph48EDzsmhj-NTHsmhhem6ihT_uQt9b-D0hFmKCMvQCZ5Yi2</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Wan, Peng</creator><creator>Sun, Dihua</creator><creator>Zhao, Min</creator><creator>Huang, Shuai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1648-679X</orcidid><orcidid>https://orcid.org/0000-0002-3274-1319</orcidid><orcidid>https://orcid.org/0000-0001-6559-1495</orcidid></search><sort><creationdate>20210201</creationdate><title>Multistability for Almost-Periodic Solutions of Takagi-Sugeno Fuzzy Neural Networks With Nonmonotonic Discontinuous Activation Functions and Time-Varying Delays</title><author>Wan, Peng ; Sun, Dihua ; Zhao, Min ; Huang, Shuai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-7a7e387462fbd44432896fa7a242cc9b119f76378401cda78af65f2b45224d113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Almost-periodic solution</topic><topic>Artificial neural networks</topic><topic>Attraction</topic><topic>attraction basin</topic><topic>Basins</topic><topic>Control theory</topic><topic>Delays</topic><topic>Fuzzy logic</topic><topic>Fuzzy neural networks</topic><topic>multistability</topic><topic>Neural networks</topic><topic>nonmonotonic discontinuous activation function</topic><topic>Stability analysis</topic><topic>Takagi-Sugeno model</topic><topic>Takagi–Sugeno fuzzy neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wan, Peng</creatorcontrib><creatorcontrib>Sun, Dihua</creatorcontrib><creatorcontrib>Zhao, Min</creatorcontrib><creatorcontrib>Huang, Shuai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wan, Peng</au><au>Sun, Dihua</au><au>Zhao, Min</au><au>Huang, Shuai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multistability for Almost-Periodic Solutions of Takagi-Sugeno Fuzzy Neural Networks With Nonmonotonic Discontinuous Activation Functions and Time-Varying Delays</atitle><jtitle>IEEE transactions on fuzzy systems</jtitle><stitle>TFUZZ</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>29</volume><issue>2</issue><spage>400</spage><epage>414</epage><pages>400-414</pages><issn>1063-6706</issn><eissn>1941-0034</eissn><coden>IEFSEV</coden><abstract>This article investigates the problem of multistability of almost-periodic solutions of Takagi-Sugeno fuzzy neural networks with nonmonotonic discontinuous activation functions and time-varying delays. Based on the geometrical properties of nonmonotonic activation functions, by using the Ascoli-Arzela theorem and the inequality techniques, it is demonstrated that under some reasonable conditions, the addressed networks have a locally exponentially stable almost-periodic solution in some hyperrectangular regions. We also estimate the attraction basins of the locally stable almost-periodic solutions, which indicates that the attraction basins of the locally exponentially stable almost-periodic solution can be larger than original hyperrectangular regions. These results, which include boundedness, globally attractivity, multiple stability, and attraction basins, generalize and improve the earlier publications, and can be extended to monostability and multistability of Takagi-Sugeno fuzzy neural networks with nonmonotonic discontinuous activation functions. Finally, several numerical examples are given to show the feasibility, the effectiveness, and the merits of the theoretical results.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TFUZZ.2019.2955886</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1648-679X</orcidid><orcidid>https://orcid.org/0000-0002-3274-1319</orcidid><orcidid>https://orcid.org/0000-0001-6559-1495</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6706
ispartof IEEE transactions on fuzzy systems, 2021-02, Vol.29 (2), p.400-414
issn 1063-6706
1941-0034
language eng
recordid cdi_crossref_primary_10_1109_TFUZZ_2019_2955886
source IEEE Electronic Library (IEL)
subjects Almost-periodic solution
Artificial neural networks
Attraction
attraction basin
Basins
Control theory
Delays
Fuzzy logic
Fuzzy neural networks
multistability
Neural networks
nonmonotonic discontinuous activation function
Stability analysis
Takagi-Sugeno model
Takagi–Sugeno fuzzy neural networks
title Multistability for Almost-Periodic Solutions of Takagi-Sugeno Fuzzy Neural Networks With Nonmonotonic Discontinuous Activation Functions and Time-Varying Delays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T11%3A22%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multistability%20for%20Almost-Periodic%20Solutions%20of%20Takagi-Sugeno%20Fuzzy%20Neural%20Networks%20With%20Nonmonotonic%20Discontinuous%20Activation%20Functions%20and%20Time-Varying%20Delays&rft.jtitle=IEEE%20transactions%20on%20fuzzy%20systems&rft.au=Wan,%20Peng&rft.date=2021-02-01&rft.volume=29&rft.issue=2&rft.spage=400&rft.epage=414&rft.pages=400-414&rft.issn=1063-6706&rft.eissn=1941-0034&rft.coden=IEFSEV&rft_id=info:doi/10.1109/TFUZZ.2019.2955886&rft_dat=%3Cproquest_RIE%3E2486592298%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2486592298&rft_id=info:pmid/&rft_ieee_id=8913623&rfr_iscdi=true