Measuring the Directional or Non-directional Distance Between Type-1 and Type-2 Fuzzy Sets With Complex Membership Functions

Fuzzy sets (FSs) may have complex, non-normal, or non-convex membership functions that occur, for example, in the output of a fuzzy logic system or when automatically generating FSs from data. Measuring the distance between such non-standard FSs can be challenging as there is no clear correct method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on fuzzy systems 2019-07, Vol.27 (7), p.1506-1515
Hauptverfasser: McCulloch, Josie, Wagner, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1515
container_issue 7
container_start_page 1506
container_title IEEE transactions on fuzzy systems
container_volume 27
creator McCulloch, Josie
Wagner, Christian
description Fuzzy sets (FSs) may have complex, non-normal, or non-convex membership functions that occur, for example, in the output of a fuzzy logic system or when automatically generating FSs from data. Measuring the distance between such non-standard FSs can be challenging as there is no clear correct method of comparison and only limited research currently exists that systematically compares existing distance measures (DMs) for these FSs. It is useful to know the distance between these sets, which can tell us how much the results of a system change when the inputs differ, or the amount of disagreement between individual's perceptions or opinions on different concepts. In addition, understanding the direction of difference between such FSs further enables us to rank them, learning if one represents a higher output or higher ratings than another. This paper builds on previous functions of measuring directional distance and, for the first time, presents methods of measuring the directional distance between any type-1 and type-2 FSs with both normal/non-normal and convex/non-convex membership functions. In real-world applications, where data-driven, non-convex, non-normal FSs are the norm, the proposed approaches for measuring the distance enables us to systematically reason about the real-world objects captured by the FSs.
doi_str_mv 10.1109/TFUZZ.2018.2882342
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TFUZZ_2018_2882342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8543161</ieee_id><sourcerecordid>2250726045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-f40d84b8f54f0490a83961bb6424ca7250ce47c16ea6799e63c9099c5037f73a3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhoMoWKt_QC8LnlNnP7LZPWprVWj1YIvQS9hsJzalTeJugrb4401bEU_zMrzPwDxBcEmhRynom8lwOpv1GFDVY0oxLthR0KFa0BCAi-M2g-ShjEGeBmfeLwGoiKjqBN9jNL5xefFO6gWSQe7Q1nlZmBUpHXkui3D-bzXIfW0Ki-QO60_Egkw2FYaUmGJ-iIwMm-12Q16x9uQtrxekX66rFX6RMa5TdH6RV22l2B_058FJZlYeL35nN5gO7yf9x3D08vDUvx2FlnNdh5mAuRKpyiKRgdBgFNeSpqkUTFgTswgsithSiUbGWqPkVoPWNgIeZzE3vBtcH-5Wrvxo0NfJsmxc-5BPWEvHTIKI2hY7tKwrvXeYJZXL18ZtEgrJznKyt5zsLCe_llvo6gDliPgHqEhwKin_Ae8AeQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2250726045</pqid></control><display><type>article</type><title>Measuring the Directional or Non-directional Distance Between Type-1 and Type-2 Fuzzy Sets With Complex Membership Functions</title><source>IEEE Electronic Library (IEL)</source><creator>McCulloch, Josie ; Wagner, Christian</creator><creatorcontrib>McCulloch, Josie ; Wagner, Christian</creatorcontrib><description>Fuzzy sets (FSs) may have complex, non-normal, or non-convex membership functions that occur, for example, in the output of a fuzzy logic system or when automatically generating FSs from data. Measuring the distance between such non-standard FSs can be challenging as there is no clear correct method of comparison and only limited research currently exists that systematically compares existing distance measures (DMs) for these FSs. It is useful to know the distance between these sets, which can tell us how much the results of a system change when the inputs differ, or the amount of disagreement between individual's perceptions or opinions on different concepts. In addition, understanding the direction of difference between such FSs further enables us to rank them, learning if one represents a higher output or higher ratings than another. This paper builds on previous functions of measuring directional distance and, for the first time, presents methods of measuring the directional distance between any type-1 and type-2 FSs with both normal/non-normal and convex/non-convex membership functions. In real-world applications, where data-driven, non-convex, non-normal FSs are the norm, the proposed approaches for measuring the distance enables us to systematically reason about the real-world objects captured by the FSs.</description><identifier>ISSN: 1063-6706</identifier><identifier>EISSN: 1941-0034</identifier><identifier>DOI: 10.1109/TFUZZ.2018.2882342</identifier><identifier>CODEN: IEFSEV</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Current measurement ; Decision making ; Directional distance ; distance ; Distance measurement ; Frequency selective surfaces ; Fuzzy logic ; Fuzzy sets ; Fuzzy systems ; Measurement methods ; non-convex ; non-normal ; Time measurement ; type-2 fuzzy sets (T2 FSs)</subject><ispartof>IEEE transactions on fuzzy systems, 2019-07, Vol.27 (7), p.1506-1515</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-f40d84b8f54f0490a83961bb6424ca7250ce47c16ea6799e63c9099c5037f73a3</citedby><cites>FETCH-LOGICAL-c339t-f40d84b8f54f0490a83961bb6424ca7250ce47c16ea6799e63c9099c5037f73a3</cites><orcidid>0000-0001-8799-5474 ; 0000-0002-6121-9722</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8543161$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8543161$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>McCulloch, Josie</creatorcontrib><creatorcontrib>Wagner, Christian</creatorcontrib><title>Measuring the Directional or Non-directional Distance Between Type-1 and Type-2 Fuzzy Sets With Complex Membership Functions</title><title>IEEE transactions on fuzzy systems</title><addtitle>TFUZZ</addtitle><description>Fuzzy sets (FSs) may have complex, non-normal, or non-convex membership functions that occur, for example, in the output of a fuzzy logic system or when automatically generating FSs from data. Measuring the distance between such non-standard FSs can be challenging as there is no clear correct method of comparison and only limited research currently exists that systematically compares existing distance measures (DMs) for these FSs. It is useful to know the distance between these sets, which can tell us how much the results of a system change when the inputs differ, or the amount of disagreement between individual's perceptions or opinions on different concepts. In addition, understanding the direction of difference between such FSs further enables us to rank them, learning if one represents a higher output or higher ratings than another. This paper builds on previous functions of measuring directional distance and, for the first time, presents methods of measuring the directional distance between any type-1 and type-2 FSs with both normal/non-normal and convex/non-convex membership functions. In real-world applications, where data-driven, non-convex, non-normal FSs are the norm, the proposed approaches for measuring the distance enables us to systematically reason about the real-world objects captured by the FSs.</description><subject>Current measurement</subject><subject>Decision making</subject><subject>Directional distance</subject><subject>distance</subject><subject>Distance measurement</subject><subject>Frequency selective surfaces</subject><subject>Fuzzy logic</subject><subject>Fuzzy sets</subject><subject>Fuzzy systems</subject><subject>Measurement methods</subject><subject>non-convex</subject><subject>non-normal</subject><subject>Time measurement</subject><subject>type-2 fuzzy sets (T2 FSs)</subject><issn>1063-6706</issn><issn>1941-0034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhoMoWKt_QC8LnlNnP7LZPWprVWj1YIvQS9hsJzalTeJugrb4401bEU_zMrzPwDxBcEmhRynom8lwOpv1GFDVY0oxLthR0KFa0BCAi-M2g-ShjEGeBmfeLwGoiKjqBN9jNL5xefFO6gWSQe7Q1nlZmBUpHXkui3D-bzXIfW0Ki-QO60_Egkw2FYaUmGJ-iIwMm-12Q16x9uQtrxekX66rFX6RMa5TdH6RV22l2B_058FJZlYeL35nN5gO7yf9x3D08vDUvx2FlnNdh5mAuRKpyiKRgdBgFNeSpqkUTFgTswgsithSiUbGWqPkVoPWNgIeZzE3vBtcH-5Wrvxo0NfJsmxc-5BPWEvHTIKI2hY7tKwrvXeYJZXL18ZtEgrJznKyt5zsLCe_llvo6gDliPgHqEhwKin_Ae8AeQw</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>McCulloch, Josie</creator><creator>Wagner, Christian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8799-5474</orcidid><orcidid>https://orcid.org/0000-0002-6121-9722</orcidid></search><sort><creationdate>20190701</creationdate><title>Measuring the Directional or Non-directional Distance Between Type-1 and Type-2 Fuzzy Sets With Complex Membership Functions</title><author>McCulloch, Josie ; Wagner, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-f40d84b8f54f0490a83961bb6424ca7250ce47c16ea6799e63c9099c5037f73a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Current measurement</topic><topic>Decision making</topic><topic>Directional distance</topic><topic>distance</topic><topic>Distance measurement</topic><topic>Frequency selective surfaces</topic><topic>Fuzzy logic</topic><topic>Fuzzy sets</topic><topic>Fuzzy systems</topic><topic>Measurement methods</topic><topic>non-convex</topic><topic>non-normal</topic><topic>Time measurement</topic><topic>type-2 fuzzy sets (T2 FSs)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McCulloch, Josie</creatorcontrib><creatorcontrib>Wagner, Christian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>McCulloch, Josie</au><au>Wagner, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measuring the Directional or Non-directional Distance Between Type-1 and Type-2 Fuzzy Sets With Complex Membership Functions</atitle><jtitle>IEEE transactions on fuzzy systems</jtitle><stitle>TFUZZ</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>27</volume><issue>7</issue><spage>1506</spage><epage>1515</epage><pages>1506-1515</pages><issn>1063-6706</issn><eissn>1941-0034</eissn><coden>IEFSEV</coden><abstract>Fuzzy sets (FSs) may have complex, non-normal, or non-convex membership functions that occur, for example, in the output of a fuzzy logic system or when automatically generating FSs from data. Measuring the distance between such non-standard FSs can be challenging as there is no clear correct method of comparison and only limited research currently exists that systematically compares existing distance measures (DMs) for these FSs. It is useful to know the distance between these sets, which can tell us how much the results of a system change when the inputs differ, or the amount of disagreement between individual's perceptions or opinions on different concepts. In addition, understanding the direction of difference between such FSs further enables us to rank them, learning if one represents a higher output or higher ratings than another. This paper builds on previous functions of measuring directional distance and, for the first time, presents methods of measuring the directional distance between any type-1 and type-2 FSs with both normal/non-normal and convex/non-convex membership functions. In real-world applications, where data-driven, non-convex, non-normal FSs are the norm, the proposed approaches for measuring the distance enables us to systematically reason about the real-world objects captured by the FSs.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TFUZZ.2018.2882342</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8799-5474</orcidid><orcidid>https://orcid.org/0000-0002-6121-9722</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6706
ispartof IEEE transactions on fuzzy systems, 2019-07, Vol.27 (7), p.1506-1515
issn 1063-6706
1941-0034
language eng
recordid cdi_crossref_primary_10_1109_TFUZZ_2018_2882342
source IEEE Electronic Library (IEL)
subjects Current measurement
Decision making
Directional distance
distance
Distance measurement
Frequency selective surfaces
Fuzzy logic
Fuzzy sets
Fuzzy systems
Measurement methods
non-convex
non-normal
Time measurement
type-2 fuzzy sets (T2 FSs)
title Measuring the Directional or Non-directional Distance Between Type-1 and Type-2 Fuzzy Sets With Complex Membership Functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T07%3A22%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measuring%20the%20Directional%20or%20Non-directional%20Distance%20Between%20Type-1%20and%20Type-2%20Fuzzy%20Sets%20With%20Complex%20Membership%20Functions&rft.jtitle=IEEE%20transactions%20on%20fuzzy%20systems&rft.au=McCulloch,%20Josie&rft.date=2019-07-01&rft.volume=27&rft.issue=7&rft.spage=1506&rft.epage=1515&rft.pages=1506-1515&rft.issn=1063-6706&rft.eissn=1941-0034&rft.coden=IEFSEV&rft_id=info:doi/10.1109/TFUZZ.2018.2882342&rft_dat=%3Cproquest_RIE%3E2250726045%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2250726045&rft_id=info:pmid/&rft_ieee_id=8543161&rfr_iscdi=true