Time-Series Forecasting Based on High-Order Fuzzy Cognitive Maps and Wavelet Transform

Fuzzy cognitive maps (FCMs) have been successfully used to model and predict stationary time series. However, it still remains challenging to deal with large-scale nonstationary time series, which have trend and vary rapidly with time. In this paper, we propose a time-series prediction model based o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on fuzzy systems 2018-12, Vol.26 (6), p.3391-3402
Hauptverfasser: Yang, Shanchao, Liu, Jing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3402
container_issue 6
container_start_page 3391
container_title IEEE transactions on fuzzy systems
container_volume 26
creator Yang, Shanchao
Liu, Jing
description Fuzzy cognitive maps (FCMs) have been successfully used to model and predict stationary time series. However, it still remains challenging to deal with large-scale nonstationary time series, which have trend and vary rapidly with time. In this paper, we propose a time-series prediction model based on the hybrid combination of high-order FCMs (HFCMs) with the redundant wavelet transform to handle large-scale nonstationary time series. The model is termed as Wavelet-HFCM. The redundant Haar wavelet transform is applied to decompose original nonstationary time series into multivariate time series; then, the HFCM is used to model and predict multivariate time series. In learning HFCMs to represent large-scale multivariate time series, a fast HFCM learning method is designed on the basis of ridge regression to reduce the learning time. Finally, summing multivariate time series up yields the predicted time series at each time step. Compared with existing classical methods, the experimental results on eight benchmark datasets show the effectiveness of our proposal, indicating that our prediction model can be applied to various prediction tasks.
doi_str_mv 10.1109/TFUZZ.2018.2831640
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TFUZZ_2018_2831640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8352858</ieee_id><sourcerecordid>2147740592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-e6c74eb2c604b0add30c1972f9cd08d013d592ddf8d59b1aa8db521ecd0e80123</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFb_gF4WPKfOfiTZHLUYK1R6MFXoZdlmJ3VLm9TdtND-elMrnt6BeZ8ZeAi5ZTBgDLKHIp_OZgMOTA24EiyRcEZ6LJMsAhDyvJshEVGSQnJJrkJYAjAZM9UjH4VbY_SO3mGgeeOxNKF19YI-mYCWNjUducVXNPEWPc23h8OeDptF7Vq3Q_pmNoGa2tJPs8MVtrTwpg5V49fX5KIyq4A3f9kn0_y5GI6i8eTldfg4jkqexW2ESZlKnPMyATkHY62AkmUpr7LSgrLAhI0zbm2lupwzY5Sdx5xht0UFjIs-uT_d3fjme4uh1ctm6-vupeZMpqmEju9a_NQqfROCx0pvvFsbv9cM9NGf_vWnj_70n78OujtBDhH_ASVirmIlfgDOaGyC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2147740592</pqid></control><display><type>article</type><title>Time-Series Forecasting Based on High-Order Fuzzy Cognitive Maps and Wavelet Transform</title><source>IEEE Electronic Library (IEL)</source><creator>Yang, Shanchao ; Liu, Jing</creator><creatorcontrib>Yang, Shanchao ; Liu, Jing</creatorcontrib><description>Fuzzy cognitive maps (FCMs) have been successfully used to model and predict stationary time series. However, it still remains challenging to deal with large-scale nonstationary time series, which have trend and vary rapidly with time. In this paper, we propose a time-series prediction model based on the hybrid combination of high-order FCMs (HFCMs) with the redundant wavelet transform to handle large-scale nonstationary time series. The model is termed as Wavelet-HFCM. The redundant Haar wavelet transform is applied to decompose original nonstationary time series into multivariate time series; then, the HFCM is used to model and predict multivariate time series. In learning HFCMs to represent large-scale multivariate time series, a fast HFCM learning method is designed on the basis of ridge regression to reduce the learning time. Finally, summing multivariate time series up yields the predicted time series at each time step. Compared with existing classical methods, the experimental results on eight benchmark datasets show the effectiveness of our proposal, indicating that our prediction model can be applied to various prediction tasks.</description><identifier>ISSN: 1063-6706</identifier><identifier>EISSN: 1941-0034</identifier><identifier>DOI: 10.1109/TFUZZ.2018.2831640</identifier><identifier>CODEN: IEFSEV</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cognitive maps ; Cognitive models ; Forecasting ; Fuzzy cognitive maps (FCMs) ; high-order fuzzy cognitive maps (HFCMs) ; Learning ; Mathematical models ; Numerical models ; Prediction algorithms ; Prediction models ; Predictive models ; redundant Haar wavelet transform ; Time series ; Time series analysis ; time-series prediction ; Wavelet transforms</subject><ispartof>IEEE transactions on fuzzy systems, 2018-12, Vol.26 (6), p.3391-3402</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-e6c74eb2c604b0add30c1972f9cd08d013d592ddf8d59b1aa8db521ecd0e80123</citedby><cites>FETCH-LOGICAL-c295t-e6c74eb2c604b0add30c1972f9cd08d013d592ddf8d59b1aa8db521ecd0e80123</cites><orcidid>0000-0003-0606-5609 ; 0000-0002-6834-5350</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8352858$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8352858$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yang, Shanchao</creatorcontrib><creatorcontrib>Liu, Jing</creatorcontrib><title>Time-Series Forecasting Based on High-Order Fuzzy Cognitive Maps and Wavelet Transform</title><title>IEEE transactions on fuzzy systems</title><addtitle>TFUZZ</addtitle><description>Fuzzy cognitive maps (FCMs) have been successfully used to model and predict stationary time series. However, it still remains challenging to deal with large-scale nonstationary time series, which have trend and vary rapidly with time. In this paper, we propose a time-series prediction model based on the hybrid combination of high-order FCMs (HFCMs) with the redundant wavelet transform to handle large-scale nonstationary time series. The model is termed as Wavelet-HFCM. The redundant Haar wavelet transform is applied to decompose original nonstationary time series into multivariate time series; then, the HFCM is used to model and predict multivariate time series. In learning HFCMs to represent large-scale multivariate time series, a fast HFCM learning method is designed on the basis of ridge regression to reduce the learning time. Finally, summing multivariate time series up yields the predicted time series at each time step. Compared with existing classical methods, the experimental results on eight benchmark datasets show the effectiveness of our proposal, indicating that our prediction model can be applied to various prediction tasks.</description><subject>Cognitive maps</subject><subject>Cognitive models</subject><subject>Forecasting</subject><subject>Fuzzy cognitive maps (FCMs)</subject><subject>high-order fuzzy cognitive maps (HFCMs)</subject><subject>Learning</subject><subject>Mathematical models</subject><subject>Numerical models</subject><subject>Prediction algorithms</subject><subject>Prediction models</subject><subject>Predictive models</subject><subject>redundant Haar wavelet transform</subject><subject>Time series</subject><subject>Time series analysis</subject><subject>time-series prediction</subject><subject>Wavelet transforms</subject><issn>1063-6706</issn><issn>1941-0034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFb_gF4WPKfOfiTZHLUYK1R6MFXoZdlmJ3VLm9TdtND-elMrnt6BeZ8ZeAi5ZTBgDLKHIp_OZgMOTA24EiyRcEZ6LJMsAhDyvJshEVGSQnJJrkJYAjAZM9UjH4VbY_SO3mGgeeOxNKF19YI-mYCWNjUducVXNPEWPc23h8OeDptF7Vq3Q_pmNoGa2tJPs8MVtrTwpg5V49fX5KIyq4A3f9kn0_y5GI6i8eTldfg4jkqexW2ESZlKnPMyATkHY62AkmUpr7LSgrLAhI0zbm2lupwzY5Sdx5xht0UFjIs-uT_d3fjme4uh1ctm6-vupeZMpqmEju9a_NQqfROCx0pvvFsbv9cM9NGf_vWnj_70n78OujtBDhH_ASVirmIlfgDOaGyC</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Yang, Shanchao</creator><creator>Liu, Jing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0606-5609</orcidid><orcidid>https://orcid.org/0000-0002-6834-5350</orcidid></search><sort><creationdate>201812</creationdate><title>Time-Series Forecasting Based on High-Order Fuzzy Cognitive Maps and Wavelet Transform</title><author>Yang, Shanchao ; Liu, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-e6c74eb2c604b0add30c1972f9cd08d013d592ddf8d59b1aa8db521ecd0e80123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cognitive maps</topic><topic>Cognitive models</topic><topic>Forecasting</topic><topic>Fuzzy cognitive maps (FCMs)</topic><topic>high-order fuzzy cognitive maps (HFCMs)</topic><topic>Learning</topic><topic>Mathematical models</topic><topic>Numerical models</topic><topic>Prediction algorithms</topic><topic>Prediction models</topic><topic>Predictive models</topic><topic>redundant Haar wavelet transform</topic><topic>Time series</topic><topic>Time series analysis</topic><topic>time-series prediction</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Shanchao</creatorcontrib><creatorcontrib>Liu, Jing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, Shanchao</au><au>Liu, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-Series Forecasting Based on High-Order Fuzzy Cognitive Maps and Wavelet Transform</atitle><jtitle>IEEE transactions on fuzzy systems</jtitle><stitle>TFUZZ</stitle><date>2018-12</date><risdate>2018</risdate><volume>26</volume><issue>6</issue><spage>3391</spage><epage>3402</epage><pages>3391-3402</pages><issn>1063-6706</issn><eissn>1941-0034</eissn><coden>IEFSEV</coden><abstract>Fuzzy cognitive maps (FCMs) have been successfully used to model and predict stationary time series. However, it still remains challenging to deal with large-scale nonstationary time series, which have trend and vary rapidly with time. In this paper, we propose a time-series prediction model based on the hybrid combination of high-order FCMs (HFCMs) with the redundant wavelet transform to handle large-scale nonstationary time series. The model is termed as Wavelet-HFCM. The redundant Haar wavelet transform is applied to decompose original nonstationary time series into multivariate time series; then, the HFCM is used to model and predict multivariate time series. In learning HFCMs to represent large-scale multivariate time series, a fast HFCM learning method is designed on the basis of ridge regression to reduce the learning time. Finally, summing multivariate time series up yields the predicted time series at each time step. Compared with existing classical methods, the experimental results on eight benchmark datasets show the effectiveness of our proposal, indicating that our prediction model can be applied to various prediction tasks.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TFUZZ.2018.2831640</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0606-5609</orcidid><orcidid>https://orcid.org/0000-0002-6834-5350</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6706
ispartof IEEE transactions on fuzzy systems, 2018-12, Vol.26 (6), p.3391-3402
issn 1063-6706
1941-0034
language eng
recordid cdi_crossref_primary_10_1109_TFUZZ_2018_2831640
source IEEE Electronic Library (IEL)
subjects Cognitive maps
Cognitive models
Forecasting
Fuzzy cognitive maps (FCMs)
high-order fuzzy cognitive maps (HFCMs)
Learning
Mathematical models
Numerical models
Prediction algorithms
Prediction models
Predictive models
redundant Haar wavelet transform
Time series
Time series analysis
time-series prediction
Wavelet transforms
title Time-Series Forecasting Based on High-Order Fuzzy Cognitive Maps and Wavelet Transform
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T20%3A58%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-Series%20Forecasting%20Based%20on%20High-Order%20Fuzzy%20Cognitive%20Maps%20and%20Wavelet%20Transform&rft.jtitle=IEEE%20transactions%20on%20fuzzy%20systems&rft.au=Yang,%20Shanchao&rft.date=2018-12&rft.volume=26&rft.issue=6&rft.spage=3391&rft.epage=3402&rft.pages=3391-3402&rft.issn=1063-6706&rft.eissn=1941-0034&rft.coden=IEFSEV&rft_id=info:doi/10.1109/TFUZZ.2018.2831640&rft_dat=%3Cproquest_RIE%3E2147740592%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2147740592&rft_id=info:pmid/&rft_ieee_id=8352858&rfr_iscdi=true