Fuzzy Clustering With Partial Supervision in Organization and Classification of Digital Images

In a Web-oriented society, organization, retrieval, and classification of digital images have become one of the major endeavors. In this paper, we study the mechanisms of fuzzy clustering and fuzzy clustering with partial supervision in the analysis and classification of images. It is demonstrated t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on fuzzy systems 2008-08, Vol.16 (4), p.1008-1026
Hauptverfasser: Pedrycz, W., Amato, A., Di Lecce, V., Piuri, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1026
container_issue 4
container_start_page 1008
container_title IEEE transactions on fuzzy systems
container_volume 16
creator Pedrycz, W.
Amato, A.
Di Lecce, V.
Piuri, V.
description In a Web-oriented society, organization, retrieval, and classification of digital images have become one of the major endeavors. In this paper, we study the mechanisms of fuzzy clustering and fuzzy clustering with partial supervision in the analysis and classification of images. It is demonstrated that the main features of fuzzy clustering become essential in revealing the structure in a collection of images and supporting their classification. The discussed operational framework of fuzzy clustering is realized by means of fuzzy c-means (FCM). When dealing with the mode of partial supervision, we augment an original objective function guiding the clustering process by an additional component expressing a level of coincidence between the membership degrees produced by the FCM and class allocation supplied by the user(s). The study also contrasts the use of the technology of fuzzy sets in image clustering with other approaches studied in this area. A suite of experiments deals with two collections of images, namely, Columbia object image library (COIL-20) and a database composed of 2000 outdoor images.
doi_str_mv 10.1109/TFUZZ.2008.917287
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TFUZZ_2008_917287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4601117</ieee_id><sourcerecordid>34502841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-b2d67a670a71c5997d244344f81bfb30189063735309fbd164ba684b7a28a80a3</originalsourceid><addsrcrecordid>eNp9kU9Lw0AQxYMoWKsfQLwED3pKncludjdHqVYLQgVbhB5cNummbkmTupsI7ad3a8SDB0_zh98b3vCC4BxhgAjpzXQ0m88HMYAYpMhjwQ-CHqYUIwBCD30PjESMAzsOTpxbASBNUPSCt1G7223DYdm6RltTLcNX07yHz8o2RpXhS7vR9tM4U1ehqcKJXarK7FSzn1W18DrlnClM3q3qIrwzS9N45XitltqdBkeFKp0--6n9YDa6nw4fo6fJw3h4-xTlJEmaKIsXjCtvT3HMkzTli5hSQmkhMCsyAihS75-ThEBaZAtkNFNM0IyrWCgBivSD6-7uxtYfrXaNXBuX67JUla5bJ4UARoVIwJNX_5KEJhALih68_AOu6tZW_guZYkxAIGUewg7Kbe2c1YXcWLNWdisR5D4Y-R2M3Acju2C85qLTGK31L08ZICInX_cXiRA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912308146</pqid></control><display><type>article</type><title>Fuzzy Clustering With Partial Supervision in Organization and Classification of Digital Images</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Pedrycz, W. ; Amato, A. ; Di Lecce, V. ; Piuri, V.</creator><creatorcontrib>Pedrycz, W. ; Amato, A. ; Di Lecce, V. ; Piuri, V.</creatorcontrib><description>In a Web-oriented society, organization, retrieval, and classification of digital images have become one of the major endeavors. In this paper, we study the mechanisms of fuzzy clustering and fuzzy clustering with partial supervision in the analysis and classification of images. It is demonstrated that the main features of fuzzy clustering become essential in revealing the structure in a collection of images and supporting their classification. The discussed operational framework of fuzzy clustering is realized by means of fuzzy c-means (FCM). When dealing with the mode of partial supervision, we augment an original objective function guiding the clustering process by an additional component expressing a level of coincidence between the membership degrees produced by the FCM and class allocation supplied by the user(s). The study also contrasts the use of the technology of fuzzy sets in image clustering with other approaches studied in this area. A suite of experiments deals with two collections of images, namely, Columbia object image library (COIL-20) and a database composed of 2000 outdoor images.</description><identifier>ISSN: 1063-6706</identifier><identifier>EISSN: 1941-0034</identifier><identifier>DOI: 10.1109/TFUZZ.2008.917287</identifier><identifier>CODEN: IEFSEV</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Angular spectrum signature ; Classification ; Clustering ; Collection ; Digital ; Digital images ; Feedback ; Fuzzy ; fuzzy c-means (FCM) ; fuzzy clustering ; Fuzzy logic ; Fuzzy set theory ; Fuzzy sets ; Fuzzy systems ; human-centric systems ; Humans ; Image analysis ; Image classification ; Image retrieval ; partial supervision ; relevance feedback ; Road vehicles ; separability index ; Societies ; Studies ; Supervision</subject><ispartof>IEEE transactions on fuzzy systems, 2008-08, Vol.16 (4), p.1008-1026</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-b2d67a670a71c5997d244344f81bfb30189063735309fbd164ba684b7a28a80a3</citedby><cites>FETCH-LOGICAL-c355t-b2d67a670a71c5997d244344f81bfb30189063735309fbd164ba684b7a28a80a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4601117$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4601117$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pedrycz, W.</creatorcontrib><creatorcontrib>Amato, A.</creatorcontrib><creatorcontrib>Di Lecce, V.</creatorcontrib><creatorcontrib>Piuri, V.</creatorcontrib><title>Fuzzy Clustering With Partial Supervision in Organization and Classification of Digital Images</title><title>IEEE transactions on fuzzy systems</title><addtitle>TFUZZ</addtitle><description>In a Web-oriented society, organization, retrieval, and classification of digital images have become one of the major endeavors. In this paper, we study the mechanisms of fuzzy clustering and fuzzy clustering with partial supervision in the analysis and classification of images. It is demonstrated that the main features of fuzzy clustering become essential in revealing the structure in a collection of images and supporting their classification. The discussed operational framework of fuzzy clustering is realized by means of fuzzy c-means (FCM). When dealing with the mode of partial supervision, we augment an original objective function guiding the clustering process by an additional component expressing a level of coincidence between the membership degrees produced by the FCM and class allocation supplied by the user(s). The study also contrasts the use of the technology of fuzzy sets in image clustering with other approaches studied in this area. A suite of experiments deals with two collections of images, namely, Columbia object image library (COIL-20) and a database composed of 2000 outdoor images.</description><subject>Angular spectrum signature</subject><subject>Classification</subject><subject>Clustering</subject><subject>Collection</subject><subject>Digital</subject><subject>Digital images</subject><subject>Feedback</subject><subject>Fuzzy</subject><subject>fuzzy c-means (FCM)</subject><subject>fuzzy clustering</subject><subject>Fuzzy logic</subject><subject>Fuzzy set theory</subject><subject>Fuzzy sets</subject><subject>Fuzzy systems</subject><subject>human-centric systems</subject><subject>Humans</subject><subject>Image analysis</subject><subject>Image classification</subject><subject>Image retrieval</subject><subject>partial supervision</subject><subject>relevance feedback</subject><subject>Road vehicles</subject><subject>separability index</subject><subject>Societies</subject><subject>Studies</subject><subject>Supervision</subject><issn>1063-6706</issn><issn>1941-0034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kU9Lw0AQxYMoWKsfQLwED3pKncludjdHqVYLQgVbhB5cNummbkmTupsI7ad3a8SDB0_zh98b3vCC4BxhgAjpzXQ0m88HMYAYpMhjwQ-CHqYUIwBCD30PjESMAzsOTpxbASBNUPSCt1G7223DYdm6RltTLcNX07yHz8o2RpXhS7vR9tM4U1ehqcKJXarK7FSzn1W18DrlnClM3q3qIrwzS9N45XitltqdBkeFKp0--6n9YDa6nw4fo6fJw3h4-xTlJEmaKIsXjCtvT3HMkzTli5hSQmkhMCsyAihS75-ThEBaZAtkNFNM0IyrWCgBivSD6-7uxtYfrXaNXBuX67JUla5bJ4UARoVIwJNX_5KEJhALih68_AOu6tZW_guZYkxAIGUewg7Kbe2c1YXcWLNWdisR5D4Y-R2M3Acju2C85qLTGK31L08ZICInX_cXiRA</recordid><startdate>20080801</startdate><enddate>20080801</enddate><creator>Pedrycz, W.</creator><creator>Amato, A.</creator><creator>Di Lecce, V.</creator><creator>Piuri, V.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7SP</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20080801</creationdate><title>Fuzzy Clustering With Partial Supervision in Organization and Classification of Digital Images</title><author>Pedrycz, W. ; Amato, A. ; Di Lecce, V. ; Piuri, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-b2d67a670a71c5997d244344f81bfb30189063735309fbd164ba684b7a28a80a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Angular spectrum signature</topic><topic>Classification</topic><topic>Clustering</topic><topic>Collection</topic><topic>Digital</topic><topic>Digital images</topic><topic>Feedback</topic><topic>Fuzzy</topic><topic>fuzzy c-means (FCM)</topic><topic>fuzzy clustering</topic><topic>Fuzzy logic</topic><topic>Fuzzy set theory</topic><topic>Fuzzy sets</topic><topic>Fuzzy systems</topic><topic>human-centric systems</topic><topic>Humans</topic><topic>Image analysis</topic><topic>Image classification</topic><topic>Image retrieval</topic><topic>partial supervision</topic><topic>relevance feedback</topic><topic>Road vehicles</topic><topic>separability index</topic><topic>Societies</topic><topic>Studies</topic><topic>Supervision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pedrycz, W.</creatorcontrib><creatorcontrib>Amato, A.</creatorcontrib><creatorcontrib>Di Lecce, V.</creatorcontrib><creatorcontrib>Piuri, V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pedrycz, W.</au><au>Amato, A.</au><au>Di Lecce, V.</au><au>Piuri, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy Clustering With Partial Supervision in Organization and Classification of Digital Images</atitle><jtitle>IEEE transactions on fuzzy systems</jtitle><stitle>TFUZZ</stitle><date>2008-08-01</date><risdate>2008</risdate><volume>16</volume><issue>4</issue><spage>1008</spage><epage>1026</epage><pages>1008-1026</pages><issn>1063-6706</issn><eissn>1941-0034</eissn><coden>IEFSEV</coden><abstract>In a Web-oriented society, organization, retrieval, and classification of digital images have become one of the major endeavors. In this paper, we study the mechanisms of fuzzy clustering and fuzzy clustering with partial supervision in the analysis and classification of images. It is demonstrated that the main features of fuzzy clustering become essential in revealing the structure in a collection of images and supporting their classification. The discussed operational framework of fuzzy clustering is realized by means of fuzzy c-means (FCM). When dealing with the mode of partial supervision, we augment an original objective function guiding the clustering process by an additional component expressing a level of coincidence between the membership degrees produced by the FCM and class allocation supplied by the user(s). The study also contrasts the use of the technology of fuzzy sets in image clustering with other approaches studied in this area. A suite of experiments deals with two collections of images, namely, Columbia object image library (COIL-20) and a database composed of 2000 outdoor images.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TFUZZ.2008.917287</doi><tpages>19</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6706
ispartof IEEE transactions on fuzzy systems, 2008-08, Vol.16 (4), p.1008-1026
issn 1063-6706
1941-0034
language eng
recordid cdi_crossref_primary_10_1109_TFUZZ_2008_917287
source IEEE/IET Electronic Library (IEL)
subjects Angular spectrum signature
Classification
Clustering
Collection
Digital
Digital images
Feedback
Fuzzy
fuzzy c-means (FCM)
fuzzy clustering
Fuzzy logic
Fuzzy set theory
Fuzzy sets
Fuzzy systems
human-centric systems
Humans
Image analysis
Image classification
Image retrieval
partial supervision
relevance feedback
Road vehicles
separability index
Societies
Studies
Supervision
title Fuzzy Clustering With Partial Supervision in Organization and Classification of Digital Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T16%3A51%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20Clustering%20With%20Partial%20Supervision%20in%20Organization%20and%20Classification%20of%20Digital%20Images&rft.jtitle=IEEE%20transactions%20on%20fuzzy%20systems&rft.au=Pedrycz,%20W.&rft.date=2008-08-01&rft.volume=16&rft.issue=4&rft.spage=1008&rft.epage=1026&rft.pages=1008-1026&rft.issn=1063-6706&rft.eissn=1941-0034&rft.coden=IEFSEV&rft_id=info:doi/10.1109/TFUZZ.2008.917287&rft_dat=%3Cproquest_RIE%3E34502841%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912308146&rft_id=info:pmid/&rft_ieee_id=4601117&rfr_iscdi=true