Integrating Data Science Into Undergraduate Science and Engineering Courses: Lessons Learned by Instructors in a Multiuniversity Research-Practice Partnership

Contribution: This article discusses a research-practice partnership (RPP) where instructors from six undergraduate courses in three universities developed data science modules tailored to the needs of their respective disciplines, academic levels, and pedagogies. Background: STEM disciplines at uni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on education 2024-09, p.1-12
Hauptverfasser: Naseri, Md. Yunus, Snyder, Caitlin, Perez-Rivera, Katherine X., Bhandari, Sambridhi, Workneh, Habtamu Alemu, Aryal, Niroj, Biswas, Gautam, Henrick, Erin C., Hotchkiss, Erin R., Jha, Manoj K., Jiang, Steven, Kern, Emily C., Lohani, Vinod K., Marston, Landon T., Vanags, Christopher P., Xia, Kang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue
container_start_page 1
container_title IEEE transactions on education
container_volume
creator Naseri, Md. Yunus
Snyder, Caitlin
Perez-Rivera, Katherine X.
Bhandari, Sambridhi
Workneh, Habtamu Alemu
Aryal, Niroj
Biswas, Gautam
Henrick, Erin C.
Hotchkiss, Erin R.
Jha, Manoj K.
Jiang, Steven
Kern, Emily C.
Lohani, Vinod K.
Marston, Landon T.
Vanags, Christopher P.
Xia, Kang
description Contribution: This article discusses a research-practice partnership (RPP) where instructors from six undergraduate courses in three universities developed data science modules tailored to the needs of their respective disciplines, academic levels, and pedagogies. Background: STEM disciplines at universities are incorporating data science topics to meet employer demands for data science-savvy graduates. Integrating these topics into regular course materials can benefit students and instructors. However, instructors encounter challenges in integrating data science instruction into their course schedules. Research Questions: How did instructors from multiple engineering and science disciplines working in an RPP integrate data science into their undergraduate courses? Methodology: A multiple case study approach, with each course as a unit of analysis, was used to identify data science topics and integration approaches. Findings: Instructors designed their modules to meet specific course needs, utilizing them as primary or supplementary learning tools based on their course structure and pedagogy. They selected a subset of discipline-agnostic data science topics, such as generating and interpreting visualizations and conducting basic statistical analyses. Although instructors faced challenges due to varying data science skills of their students, they valued the control they had in integrating data science content into their courses. They were uncertain about whether the modules could be adopted for use by other instructors, specifically by those outside of their discipline, but they all believed the approach for developing and integrating data science could be adapted to student needs in different situations.
doi_str_mv 10.1109/TE.2024.3436041
format Article
fullrecord <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TE_2024_3436041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10666964</ieee_id><sourcerecordid>10_1109_TE_2024_3436041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c187t-81910a9a9de5a68a42673f2ed9fe9d41bda1aa4209a46e3cf109e929f52eddde3</originalsourceid><addsrcrecordid>eNpNkEFPAjEUhBujiYievXjoH1hot7tl680gKglGonDePNq3UINd0nZN-DP-VksgxtPkvW9mDkPILWcDzpkaLiaDnOXFQBRCsoKfkR4vy1GmpKjOSY8xXmVKlOqSXIXwmc6izMse-Zm6iGsP0bo1fYQI9ENbdBppAi1dOoM-YdNBxD8EztCJW1uH6A-5cdv5gOGezjCE1oWk4B0autqnmhB9p2PrA7WOAn3tttF2zn6jDzbu6TuG5NabbO5BR5vq5-CjS3Rjd9fkooFtwJuT9snyabIYv2Szt-fp-GGWaV6NYlZxxRkoUAZLkBUUuRyJJkejGlSm4CsDHNKXKSgkCt2kwVDlqimTxxgUfTI89mrfhuCxqXfefoHf15zVh3nrxaQ-zFuf5k2Ju2PCIuI_t5RSyUL8AsNwewg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Integrating Data Science Into Undergraduate Science and Engineering Courses: Lessons Learned by Instructors in a Multiuniversity Research-Practice Partnership</title><source>IEEE Electronic Library (IEL)</source><creator>Naseri, Md. Yunus ; Snyder, Caitlin ; Perez-Rivera, Katherine X. ; Bhandari, Sambridhi ; Workneh, Habtamu Alemu ; Aryal, Niroj ; Biswas, Gautam ; Henrick, Erin C. ; Hotchkiss, Erin R. ; Jha, Manoj K. ; Jiang, Steven ; Kern, Emily C. ; Lohani, Vinod K. ; Marston, Landon T. ; Vanags, Christopher P. ; Xia, Kang</creator><creatorcontrib>Naseri, Md. Yunus ; Snyder, Caitlin ; Perez-Rivera, Katherine X. ; Bhandari, Sambridhi ; Workneh, Habtamu Alemu ; Aryal, Niroj ; Biswas, Gautam ; Henrick, Erin C. ; Hotchkiss, Erin R. ; Jha, Manoj K. ; Jiang, Steven ; Kern, Emily C. ; Lohani, Vinod K. ; Marston, Landon T. ; Vanags, Christopher P. ; Xia, Kang</creatorcontrib><description>Contribution: This article discusses a research-practice partnership (RPP) where instructors from six undergraduate courses in three universities developed data science modules tailored to the needs of their respective disciplines, academic levels, and pedagogies. Background: STEM disciplines at universities are incorporating data science topics to meet employer demands for data science-savvy graduates. Integrating these topics into regular course materials can benefit students and instructors. However, instructors encounter challenges in integrating data science instruction into their course schedules. Research Questions: How did instructors from multiple engineering and science disciplines working in an RPP integrate data science into their undergraduate courses? Methodology: A multiple case study approach, with each course as a unit of analysis, was used to identify data science topics and integration approaches. Findings: Instructors designed their modules to meet specific course needs, utilizing them as primary or supplementary learning tools based on their course structure and pedagogy. They selected a subset of discipline-agnostic data science topics, such as generating and interpreting visualizations and conducting basic statistical analyses. Although instructors faced challenges due to varying data science skills of their students, they valued the control they had in integrating data science content into their courses. They were uncertain about whether the modules could be adopted for use by other instructors, specifically by those outside of their discipline, but they all believed the approach for developing and integrating data science could be adapted to student needs in different situations.</description><identifier>ISSN: 0018-9359</identifier><identifier>EISSN: 1557-9638</identifier><identifier>DOI: 10.1109/TE.2024.3436041</identifier><identifier>CODEN: IEEDAB</identifier><language>eng</language><publisher>IEEE</publisher><subject>Collaboration ; Data literacy ; Data science ; data science integration ; Data visualization ; Green products ; Iterative methods ; modular approach ; research–practice partnership (RPP) ; STEM ; Surveys</subject><ispartof>IEEE transactions on education, 2024-09, p.1-12</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0005-5160-6111 ; 0000-0002-2752-3878 ; 0000-0003-1156-2992 ; 0000-0002-4537-6509 ; 0000-0001-6132-9107 ; 0000-0003-2200-745X ; 0000-0003-2285-1060 ; 0000-0001-9116-1691 ; 0009-0001-3071-9716 ; 0000-0001-8625-7031</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10666964$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Naseri, Md. Yunus</creatorcontrib><creatorcontrib>Snyder, Caitlin</creatorcontrib><creatorcontrib>Perez-Rivera, Katherine X.</creatorcontrib><creatorcontrib>Bhandari, Sambridhi</creatorcontrib><creatorcontrib>Workneh, Habtamu Alemu</creatorcontrib><creatorcontrib>Aryal, Niroj</creatorcontrib><creatorcontrib>Biswas, Gautam</creatorcontrib><creatorcontrib>Henrick, Erin C.</creatorcontrib><creatorcontrib>Hotchkiss, Erin R.</creatorcontrib><creatorcontrib>Jha, Manoj K.</creatorcontrib><creatorcontrib>Jiang, Steven</creatorcontrib><creatorcontrib>Kern, Emily C.</creatorcontrib><creatorcontrib>Lohani, Vinod K.</creatorcontrib><creatorcontrib>Marston, Landon T.</creatorcontrib><creatorcontrib>Vanags, Christopher P.</creatorcontrib><creatorcontrib>Xia, Kang</creatorcontrib><title>Integrating Data Science Into Undergraduate Science and Engineering Courses: Lessons Learned by Instructors in a Multiuniversity Research-Practice Partnership</title><title>IEEE transactions on education</title><addtitle>TE</addtitle><description>Contribution: This article discusses a research-practice partnership (RPP) where instructors from six undergraduate courses in three universities developed data science modules tailored to the needs of their respective disciplines, academic levels, and pedagogies. Background: STEM disciplines at universities are incorporating data science topics to meet employer demands for data science-savvy graduates. Integrating these topics into regular course materials can benefit students and instructors. However, instructors encounter challenges in integrating data science instruction into their course schedules. Research Questions: How did instructors from multiple engineering and science disciplines working in an RPP integrate data science into their undergraduate courses? Methodology: A multiple case study approach, with each course as a unit of analysis, was used to identify data science topics and integration approaches. Findings: Instructors designed their modules to meet specific course needs, utilizing them as primary or supplementary learning tools based on their course structure and pedagogy. They selected a subset of discipline-agnostic data science topics, such as generating and interpreting visualizations and conducting basic statistical analyses. Although instructors faced challenges due to varying data science skills of their students, they valued the control they had in integrating data science content into their courses. They were uncertain about whether the modules could be adopted for use by other instructors, specifically by those outside of their discipline, but they all believed the approach for developing and integrating data science could be adapted to student needs in different situations.</description><subject>Collaboration</subject><subject>Data literacy</subject><subject>Data science</subject><subject>data science integration</subject><subject>Data visualization</subject><subject>Green products</subject><subject>Iterative methods</subject><subject>modular approach</subject><subject>research–practice partnership (RPP)</subject><subject>STEM</subject><subject>Surveys</subject><issn>0018-9359</issn><issn>1557-9638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkEFPAjEUhBujiYievXjoH1hot7tl680gKglGonDePNq3UINd0nZN-DP-VksgxtPkvW9mDkPILWcDzpkaLiaDnOXFQBRCsoKfkR4vy1GmpKjOSY8xXmVKlOqSXIXwmc6izMse-Zm6iGsP0bo1fYQI9ENbdBppAi1dOoM-YdNBxD8EztCJW1uH6A-5cdv5gOGezjCE1oWk4B0autqnmhB9p2PrA7WOAn3tttF2zn6jDzbu6TuG5NabbO5BR5vq5-CjS3Rjd9fkooFtwJuT9snyabIYv2Szt-fp-GGWaV6NYlZxxRkoUAZLkBUUuRyJJkejGlSm4CsDHNKXKSgkCt2kwVDlqimTxxgUfTI89mrfhuCxqXfefoHf15zVh3nrxaQ-zFuf5k2Ju2PCIuI_t5RSyUL8AsNwewg</recordid><startdate>20240905</startdate><enddate>20240905</enddate><creator>Naseri, Md. Yunus</creator><creator>Snyder, Caitlin</creator><creator>Perez-Rivera, Katherine X.</creator><creator>Bhandari, Sambridhi</creator><creator>Workneh, Habtamu Alemu</creator><creator>Aryal, Niroj</creator><creator>Biswas, Gautam</creator><creator>Henrick, Erin C.</creator><creator>Hotchkiss, Erin R.</creator><creator>Jha, Manoj K.</creator><creator>Jiang, Steven</creator><creator>Kern, Emily C.</creator><creator>Lohani, Vinod K.</creator><creator>Marston, Landon T.</creator><creator>Vanags, Christopher P.</creator><creator>Xia, Kang</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0005-5160-6111</orcidid><orcidid>https://orcid.org/0000-0002-2752-3878</orcidid><orcidid>https://orcid.org/0000-0003-1156-2992</orcidid><orcidid>https://orcid.org/0000-0002-4537-6509</orcidid><orcidid>https://orcid.org/0000-0001-6132-9107</orcidid><orcidid>https://orcid.org/0000-0003-2200-745X</orcidid><orcidid>https://orcid.org/0000-0003-2285-1060</orcidid><orcidid>https://orcid.org/0000-0001-9116-1691</orcidid><orcidid>https://orcid.org/0009-0001-3071-9716</orcidid><orcidid>https://orcid.org/0000-0001-8625-7031</orcidid></search><sort><creationdate>20240905</creationdate><title>Integrating Data Science Into Undergraduate Science and Engineering Courses: Lessons Learned by Instructors in a Multiuniversity Research-Practice Partnership</title><author>Naseri, Md. Yunus ; Snyder, Caitlin ; Perez-Rivera, Katherine X. ; Bhandari, Sambridhi ; Workneh, Habtamu Alemu ; Aryal, Niroj ; Biswas, Gautam ; Henrick, Erin C. ; Hotchkiss, Erin R. ; Jha, Manoj K. ; Jiang, Steven ; Kern, Emily C. ; Lohani, Vinod K. ; Marston, Landon T. ; Vanags, Christopher P. ; Xia, Kang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c187t-81910a9a9de5a68a42673f2ed9fe9d41bda1aa4209a46e3cf109e929f52eddde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Collaboration</topic><topic>Data literacy</topic><topic>Data science</topic><topic>data science integration</topic><topic>Data visualization</topic><topic>Green products</topic><topic>Iterative methods</topic><topic>modular approach</topic><topic>research–practice partnership (RPP)</topic><topic>STEM</topic><topic>Surveys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naseri, Md. Yunus</creatorcontrib><creatorcontrib>Snyder, Caitlin</creatorcontrib><creatorcontrib>Perez-Rivera, Katherine X.</creatorcontrib><creatorcontrib>Bhandari, Sambridhi</creatorcontrib><creatorcontrib>Workneh, Habtamu Alemu</creatorcontrib><creatorcontrib>Aryal, Niroj</creatorcontrib><creatorcontrib>Biswas, Gautam</creatorcontrib><creatorcontrib>Henrick, Erin C.</creatorcontrib><creatorcontrib>Hotchkiss, Erin R.</creatorcontrib><creatorcontrib>Jha, Manoj K.</creatorcontrib><creatorcontrib>Jiang, Steven</creatorcontrib><creatorcontrib>Kern, Emily C.</creatorcontrib><creatorcontrib>Lohani, Vinod K.</creatorcontrib><creatorcontrib>Marston, Landon T.</creatorcontrib><creatorcontrib>Vanags, Christopher P.</creatorcontrib><creatorcontrib>Xia, Kang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on education</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naseri, Md. Yunus</au><au>Snyder, Caitlin</au><au>Perez-Rivera, Katherine X.</au><au>Bhandari, Sambridhi</au><au>Workneh, Habtamu Alemu</au><au>Aryal, Niroj</au><au>Biswas, Gautam</au><au>Henrick, Erin C.</au><au>Hotchkiss, Erin R.</au><au>Jha, Manoj K.</au><au>Jiang, Steven</au><au>Kern, Emily C.</au><au>Lohani, Vinod K.</au><au>Marston, Landon T.</au><au>Vanags, Christopher P.</au><au>Xia, Kang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrating Data Science Into Undergraduate Science and Engineering Courses: Lessons Learned by Instructors in a Multiuniversity Research-Practice Partnership</atitle><jtitle>IEEE transactions on education</jtitle><stitle>TE</stitle><date>2024-09-05</date><risdate>2024</risdate><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0018-9359</issn><eissn>1557-9638</eissn><coden>IEEDAB</coden><abstract>Contribution: This article discusses a research-practice partnership (RPP) where instructors from six undergraduate courses in three universities developed data science modules tailored to the needs of their respective disciplines, academic levels, and pedagogies. Background: STEM disciplines at universities are incorporating data science topics to meet employer demands for data science-savvy graduates. Integrating these topics into regular course materials can benefit students and instructors. However, instructors encounter challenges in integrating data science instruction into their course schedules. Research Questions: How did instructors from multiple engineering and science disciplines working in an RPP integrate data science into their undergraduate courses? Methodology: A multiple case study approach, with each course as a unit of analysis, was used to identify data science topics and integration approaches. Findings: Instructors designed their modules to meet specific course needs, utilizing them as primary or supplementary learning tools based on their course structure and pedagogy. They selected a subset of discipline-agnostic data science topics, such as generating and interpreting visualizations and conducting basic statistical analyses. Although instructors faced challenges due to varying data science skills of their students, they valued the control they had in integrating data science content into their courses. They were uncertain about whether the modules could be adopted for use by other instructors, specifically by those outside of their discipline, but they all believed the approach for developing and integrating data science could be adapted to student needs in different situations.</abstract><pub>IEEE</pub><doi>10.1109/TE.2024.3436041</doi><tpages>12</tpages><orcidid>https://orcid.org/0009-0005-5160-6111</orcidid><orcidid>https://orcid.org/0000-0002-2752-3878</orcidid><orcidid>https://orcid.org/0000-0003-1156-2992</orcidid><orcidid>https://orcid.org/0000-0002-4537-6509</orcidid><orcidid>https://orcid.org/0000-0001-6132-9107</orcidid><orcidid>https://orcid.org/0000-0003-2200-745X</orcidid><orcidid>https://orcid.org/0000-0003-2285-1060</orcidid><orcidid>https://orcid.org/0000-0001-9116-1691</orcidid><orcidid>https://orcid.org/0009-0001-3071-9716</orcidid><orcidid>https://orcid.org/0000-0001-8625-7031</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-9359
ispartof IEEE transactions on education, 2024-09, p.1-12
issn 0018-9359
1557-9638
language eng
recordid cdi_crossref_primary_10_1109_TE_2024_3436041
source IEEE Electronic Library (IEL)
subjects Collaboration
Data literacy
Data science
data science integration
Data visualization
Green products
Iterative methods
modular approach
research–practice partnership (RPP)
STEM
Surveys
title Integrating Data Science Into Undergraduate Science and Engineering Courses: Lessons Learned by Instructors in a Multiuniversity Research-Practice Partnership
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A42%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrating%20Data%20Science%20Into%20Undergraduate%20Science%20and%20Engineering%20Courses:%20Lessons%20Learned%20by%20Instructors%20in%20a%20Multiuniversity%20Research-Practice%20Partnership&rft.jtitle=IEEE%20transactions%20on%20education&rft.au=Naseri,%20Md.%20Yunus&rft.date=2024-09-05&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0018-9359&rft.eissn=1557-9638&rft.coden=IEEDAB&rft_id=info:doi/10.1109/TE.2024.3436041&rft_dat=%3Ccrossref_ieee_%3E10_1109_TE_2024_3436041%3C/crossref_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10666964&rfr_iscdi=true