Integrating Data Science Into Undergraduate Science and Engineering Courses: Lessons Learned by Instructors in a Multiuniversity Research-Practice Partnership
Contribution: This article discusses a research-practice partnership (RPP) where instructors from six undergraduate courses in three universities developed data science modules tailored to the needs of their respective disciplines, academic levels, and pedagogies. Background: STEM disciplines at uni...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on education 2024-09, p.1-12 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on education |
container_volume | |
creator | Naseri, Md. Yunus Snyder, Caitlin Perez-Rivera, Katherine X. Bhandari, Sambridhi Workneh, Habtamu Alemu Aryal, Niroj Biswas, Gautam Henrick, Erin C. Hotchkiss, Erin R. Jha, Manoj K. Jiang, Steven Kern, Emily C. Lohani, Vinod K. Marston, Landon T. Vanags, Christopher P. Xia, Kang |
description | Contribution: This article discusses a research-practice partnership (RPP) where instructors from six undergraduate courses in three universities developed data science modules tailored to the needs of their respective disciplines, academic levels, and pedagogies.
Background: STEM disciplines at universities are incorporating data science topics to meet employer demands for data science-savvy graduates. Integrating these topics into regular course materials can benefit students and instructors. However, instructors encounter challenges in integrating data science instruction into their course schedules.
Research Questions: How did instructors from multiple engineering and science disciplines working in an RPP integrate data science into their undergraduate courses?
Methodology: A multiple case study approach, with each course as a unit of analysis, was used to identify data science topics and integration approaches.
Findings: Instructors designed their modules to meet specific course needs, utilizing them as primary or supplementary learning tools based on their course structure and pedagogy. They selected a subset of discipline-agnostic data science topics, such as generating and interpreting visualizations and conducting basic statistical analyses. Although instructors faced challenges due to varying data science skills of their students, they valued the control they had in integrating data science content into their courses. They were uncertain about whether the modules could be adopted for use by other instructors, specifically by those outside of their discipline, but they all believed the approach for developing and integrating data science could be adapted to student needs in different situations. |
doi_str_mv | 10.1109/TE.2024.3436041 |
format | Article |
fullrecord | <record><control><sourceid>crossref_ieee_</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TE_2024_3436041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10666964</ieee_id><sourcerecordid>10_1109_TE_2024_3436041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c187t-81910a9a9de5a68a42673f2ed9fe9d41bda1aa4209a46e3cf109e929f52eddde3</originalsourceid><addsrcrecordid>eNpNkEFPAjEUhBujiYievXjoH1hot7tl680gKglGonDePNq3UINd0nZN-DP-VksgxtPkvW9mDkPILWcDzpkaLiaDnOXFQBRCsoKfkR4vy1GmpKjOSY8xXmVKlOqSXIXwmc6izMse-Zm6iGsP0bo1fYQI9ENbdBppAi1dOoM-YdNBxD8EztCJW1uH6A-5cdv5gOGezjCE1oWk4B0autqnmhB9p2PrA7WOAn3tttF2zn6jDzbu6TuG5NabbO5BR5vq5-CjS3Rjd9fkooFtwJuT9snyabIYv2Szt-fp-GGWaV6NYlZxxRkoUAZLkBUUuRyJJkejGlSm4CsDHNKXKSgkCt2kwVDlqimTxxgUfTI89mrfhuCxqXfefoHf15zVh3nrxaQ-zFuf5k2Ju2PCIuI_t5RSyUL8AsNwewg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Integrating Data Science Into Undergraduate Science and Engineering Courses: Lessons Learned by Instructors in a Multiuniversity Research-Practice Partnership</title><source>IEEE Electronic Library (IEL)</source><creator>Naseri, Md. Yunus ; Snyder, Caitlin ; Perez-Rivera, Katherine X. ; Bhandari, Sambridhi ; Workneh, Habtamu Alemu ; Aryal, Niroj ; Biswas, Gautam ; Henrick, Erin C. ; Hotchkiss, Erin R. ; Jha, Manoj K. ; Jiang, Steven ; Kern, Emily C. ; Lohani, Vinod K. ; Marston, Landon T. ; Vanags, Christopher P. ; Xia, Kang</creator><creatorcontrib>Naseri, Md. Yunus ; Snyder, Caitlin ; Perez-Rivera, Katherine X. ; Bhandari, Sambridhi ; Workneh, Habtamu Alemu ; Aryal, Niroj ; Biswas, Gautam ; Henrick, Erin C. ; Hotchkiss, Erin R. ; Jha, Manoj K. ; Jiang, Steven ; Kern, Emily C. ; Lohani, Vinod K. ; Marston, Landon T. ; Vanags, Christopher P. ; Xia, Kang</creatorcontrib><description>Contribution: This article discusses a research-practice partnership (RPP) where instructors from six undergraduate courses in three universities developed data science modules tailored to the needs of their respective disciplines, academic levels, and pedagogies.
Background: STEM disciplines at universities are incorporating data science topics to meet employer demands for data science-savvy graduates. Integrating these topics into regular course materials can benefit students and instructors. However, instructors encounter challenges in integrating data science instruction into their course schedules.
Research Questions: How did instructors from multiple engineering and science disciplines working in an RPP integrate data science into their undergraduate courses?
Methodology: A multiple case study approach, with each course as a unit of analysis, was used to identify data science topics and integration approaches.
Findings: Instructors designed their modules to meet specific course needs, utilizing them as primary or supplementary learning tools based on their course structure and pedagogy. They selected a subset of discipline-agnostic data science topics, such as generating and interpreting visualizations and conducting basic statistical analyses. Although instructors faced challenges due to varying data science skills of their students, they valued the control they had in integrating data science content into their courses. They were uncertain about whether the modules could be adopted for use by other instructors, specifically by those outside of their discipline, but they all believed the approach for developing and integrating data science could be adapted to student needs in different situations.</description><identifier>ISSN: 0018-9359</identifier><identifier>EISSN: 1557-9638</identifier><identifier>DOI: 10.1109/TE.2024.3436041</identifier><identifier>CODEN: IEEDAB</identifier><language>eng</language><publisher>IEEE</publisher><subject>Collaboration ; Data literacy ; Data science ; data science integration ; Data visualization ; Green products ; Iterative methods ; modular approach ; research–practice partnership (RPP) ; STEM ; Surveys</subject><ispartof>IEEE transactions on education, 2024-09, p.1-12</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0005-5160-6111 ; 0000-0002-2752-3878 ; 0000-0003-1156-2992 ; 0000-0002-4537-6509 ; 0000-0001-6132-9107 ; 0000-0003-2200-745X ; 0000-0003-2285-1060 ; 0000-0001-9116-1691 ; 0009-0001-3071-9716 ; 0000-0001-8625-7031</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10666964$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Naseri, Md. Yunus</creatorcontrib><creatorcontrib>Snyder, Caitlin</creatorcontrib><creatorcontrib>Perez-Rivera, Katherine X.</creatorcontrib><creatorcontrib>Bhandari, Sambridhi</creatorcontrib><creatorcontrib>Workneh, Habtamu Alemu</creatorcontrib><creatorcontrib>Aryal, Niroj</creatorcontrib><creatorcontrib>Biswas, Gautam</creatorcontrib><creatorcontrib>Henrick, Erin C.</creatorcontrib><creatorcontrib>Hotchkiss, Erin R.</creatorcontrib><creatorcontrib>Jha, Manoj K.</creatorcontrib><creatorcontrib>Jiang, Steven</creatorcontrib><creatorcontrib>Kern, Emily C.</creatorcontrib><creatorcontrib>Lohani, Vinod K.</creatorcontrib><creatorcontrib>Marston, Landon T.</creatorcontrib><creatorcontrib>Vanags, Christopher P.</creatorcontrib><creatorcontrib>Xia, Kang</creatorcontrib><title>Integrating Data Science Into Undergraduate Science and Engineering Courses: Lessons Learned by Instructors in a Multiuniversity Research-Practice Partnership</title><title>IEEE transactions on education</title><addtitle>TE</addtitle><description>Contribution: This article discusses a research-practice partnership (RPP) where instructors from six undergraduate courses in three universities developed data science modules tailored to the needs of their respective disciplines, academic levels, and pedagogies.
Background: STEM disciplines at universities are incorporating data science topics to meet employer demands for data science-savvy graduates. Integrating these topics into regular course materials can benefit students and instructors. However, instructors encounter challenges in integrating data science instruction into their course schedules.
Research Questions: How did instructors from multiple engineering and science disciplines working in an RPP integrate data science into their undergraduate courses?
Methodology: A multiple case study approach, with each course as a unit of analysis, was used to identify data science topics and integration approaches.
Findings: Instructors designed their modules to meet specific course needs, utilizing them as primary or supplementary learning tools based on their course structure and pedagogy. They selected a subset of discipline-agnostic data science topics, such as generating and interpreting visualizations and conducting basic statistical analyses. Although instructors faced challenges due to varying data science skills of their students, they valued the control they had in integrating data science content into their courses. They were uncertain about whether the modules could be adopted for use by other instructors, specifically by those outside of their discipline, but they all believed the approach for developing and integrating data science could be adapted to student needs in different situations.</description><subject>Collaboration</subject><subject>Data literacy</subject><subject>Data science</subject><subject>data science integration</subject><subject>Data visualization</subject><subject>Green products</subject><subject>Iterative methods</subject><subject>modular approach</subject><subject>research–practice partnership (RPP)</subject><subject>STEM</subject><subject>Surveys</subject><issn>0018-9359</issn><issn>1557-9638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkEFPAjEUhBujiYievXjoH1hot7tl680gKglGonDePNq3UINd0nZN-DP-VksgxtPkvW9mDkPILWcDzpkaLiaDnOXFQBRCsoKfkR4vy1GmpKjOSY8xXmVKlOqSXIXwmc6izMse-Zm6iGsP0bo1fYQI9ENbdBppAi1dOoM-YdNBxD8EztCJW1uH6A-5cdv5gOGezjCE1oWk4B0autqnmhB9p2PrA7WOAn3tttF2zn6jDzbu6TuG5NabbO5BR5vq5-CjS3Rjd9fkooFtwJuT9snyabIYv2Szt-fp-GGWaV6NYlZxxRkoUAZLkBUUuRyJJkejGlSm4CsDHNKXKSgkCt2kwVDlqimTxxgUfTI89mrfhuCxqXfefoHf15zVh3nrxaQ-zFuf5k2Ju2PCIuI_t5RSyUL8AsNwewg</recordid><startdate>20240905</startdate><enddate>20240905</enddate><creator>Naseri, Md. Yunus</creator><creator>Snyder, Caitlin</creator><creator>Perez-Rivera, Katherine X.</creator><creator>Bhandari, Sambridhi</creator><creator>Workneh, Habtamu Alemu</creator><creator>Aryal, Niroj</creator><creator>Biswas, Gautam</creator><creator>Henrick, Erin C.</creator><creator>Hotchkiss, Erin R.</creator><creator>Jha, Manoj K.</creator><creator>Jiang, Steven</creator><creator>Kern, Emily C.</creator><creator>Lohani, Vinod K.</creator><creator>Marston, Landon T.</creator><creator>Vanags, Christopher P.</creator><creator>Xia, Kang</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0005-5160-6111</orcidid><orcidid>https://orcid.org/0000-0002-2752-3878</orcidid><orcidid>https://orcid.org/0000-0003-1156-2992</orcidid><orcidid>https://orcid.org/0000-0002-4537-6509</orcidid><orcidid>https://orcid.org/0000-0001-6132-9107</orcidid><orcidid>https://orcid.org/0000-0003-2200-745X</orcidid><orcidid>https://orcid.org/0000-0003-2285-1060</orcidid><orcidid>https://orcid.org/0000-0001-9116-1691</orcidid><orcidid>https://orcid.org/0009-0001-3071-9716</orcidid><orcidid>https://orcid.org/0000-0001-8625-7031</orcidid></search><sort><creationdate>20240905</creationdate><title>Integrating Data Science Into Undergraduate Science and Engineering Courses: Lessons Learned by Instructors in a Multiuniversity Research-Practice Partnership</title><author>Naseri, Md. Yunus ; Snyder, Caitlin ; Perez-Rivera, Katherine X. ; Bhandari, Sambridhi ; Workneh, Habtamu Alemu ; Aryal, Niroj ; Biswas, Gautam ; Henrick, Erin C. ; Hotchkiss, Erin R. ; Jha, Manoj K. ; Jiang, Steven ; Kern, Emily C. ; Lohani, Vinod K. ; Marston, Landon T. ; Vanags, Christopher P. ; Xia, Kang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c187t-81910a9a9de5a68a42673f2ed9fe9d41bda1aa4209a46e3cf109e929f52eddde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Collaboration</topic><topic>Data literacy</topic><topic>Data science</topic><topic>data science integration</topic><topic>Data visualization</topic><topic>Green products</topic><topic>Iterative methods</topic><topic>modular approach</topic><topic>research–practice partnership (RPP)</topic><topic>STEM</topic><topic>Surveys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naseri, Md. Yunus</creatorcontrib><creatorcontrib>Snyder, Caitlin</creatorcontrib><creatorcontrib>Perez-Rivera, Katherine X.</creatorcontrib><creatorcontrib>Bhandari, Sambridhi</creatorcontrib><creatorcontrib>Workneh, Habtamu Alemu</creatorcontrib><creatorcontrib>Aryal, Niroj</creatorcontrib><creatorcontrib>Biswas, Gautam</creatorcontrib><creatorcontrib>Henrick, Erin C.</creatorcontrib><creatorcontrib>Hotchkiss, Erin R.</creatorcontrib><creatorcontrib>Jha, Manoj K.</creatorcontrib><creatorcontrib>Jiang, Steven</creatorcontrib><creatorcontrib>Kern, Emily C.</creatorcontrib><creatorcontrib>Lohani, Vinod K.</creatorcontrib><creatorcontrib>Marston, Landon T.</creatorcontrib><creatorcontrib>Vanags, Christopher P.</creatorcontrib><creatorcontrib>Xia, Kang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on education</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naseri, Md. Yunus</au><au>Snyder, Caitlin</au><au>Perez-Rivera, Katherine X.</au><au>Bhandari, Sambridhi</au><au>Workneh, Habtamu Alemu</au><au>Aryal, Niroj</au><au>Biswas, Gautam</au><au>Henrick, Erin C.</au><au>Hotchkiss, Erin R.</au><au>Jha, Manoj K.</au><au>Jiang, Steven</au><au>Kern, Emily C.</au><au>Lohani, Vinod K.</au><au>Marston, Landon T.</au><au>Vanags, Christopher P.</au><au>Xia, Kang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrating Data Science Into Undergraduate Science and Engineering Courses: Lessons Learned by Instructors in a Multiuniversity Research-Practice Partnership</atitle><jtitle>IEEE transactions on education</jtitle><stitle>TE</stitle><date>2024-09-05</date><risdate>2024</risdate><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0018-9359</issn><eissn>1557-9638</eissn><coden>IEEDAB</coden><abstract>Contribution: This article discusses a research-practice partnership (RPP) where instructors from six undergraduate courses in three universities developed data science modules tailored to the needs of their respective disciplines, academic levels, and pedagogies.
Background: STEM disciplines at universities are incorporating data science topics to meet employer demands for data science-savvy graduates. Integrating these topics into regular course materials can benefit students and instructors. However, instructors encounter challenges in integrating data science instruction into their course schedules.
Research Questions: How did instructors from multiple engineering and science disciplines working in an RPP integrate data science into their undergraduate courses?
Methodology: A multiple case study approach, with each course as a unit of analysis, was used to identify data science topics and integration approaches.
Findings: Instructors designed their modules to meet specific course needs, utilizing them as primary or supplementary learning tools based on their course structure and pedagogy. They selected a subset of discipline-agnostic data science topics, such as generating and interpreting visualizations and conducting basic statistical analyses. Although instructors faced challenges due to varying data science skills of their students, they valued the control they had in integrating data science content into their courses. They were uncertain about whether the modules could be adopted for use by other instructors, specifically by those outside of their discipline, but they all believed the approach for developing and integrating data science could be adapted to student needs in different situations.</abstract><pub>IEEE</pub><doi>10.1109/TE.2024.3436041</doi><tpages>12</tpages><orcidid>https://orcid.org/0009-0005-5160-6111</orcidid><orcidid>https://orcid.org/0000-0002-2752-3878</orcidid><orcidid>https://orcid.org/0000-0003-1156-2992</orcidid><orcidid>https://orcid.org/0000-0002-4537-6509</orcidid><orcidid>https://orcid.org/0000-0001-6132-9107</orcidid><orcidid>https://orcid.org/0000-0003-2200-745X</orcidid><orcidid>https://orcid.org/0000-0003-2285-1060</orcidid><orcidid>https://orcid.org/0000-0001-9116-1691</orcidid><orcidid>https://orcid.org/0009-0001-3071-9716</orcidid><orcidid>https://orcid.org/0000-0001-8625-7031</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9359 |
ispartof | IEEE transactions on education, 2024-09, p.1-12 |
issn | 0018-9359 1557-9638 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TE_2024_3436041 |
source | IEEE Electronic Library (IEL) |
subjects | Collaboration Data literacy Data science data science integration Data visualization Green products Iterative methods modular approach research–practice partnership (RPP) STEM Surveys |
title | Integrating Data Science Into Undergraduate Science and Engineering Courses: Lessons Learned by Instructors in a Multiuniversity Research-Practice Partnership |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T02%3A42%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrating%20Data%20Science%20Into%20Undergraduate%20Science%20and%20Engineering%20Courses:%20Lessons%20Learned%20by%20Instructors%20in%20a%20Multiuniversity%20Research-Practice%20Partnership&rft.jtitle=IEEE%20transactions%20on%20education&rft.au=Naseri,%20Md.%20Yunus&rft.date=2024-09-05&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0018-9359&rft.eissn=1557-9638&rft.coden=IEEDAB&rft_id=info:doi/10.1109/TE.2024.3436041&rft_dat=%3Ccrossref_ieee_%3E10_1109_TE_2024_3436041%3C/crossref_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10666964&rfr_iscdi=true |