Evolutionary Instance Selection With Multiple Partial Adaptive Classifiers for Domain Adaptation

Domain adaptation reuses the knowledge learned from an existing (source) domain to classify unlabelled data from another related (target) domain. However, the two domains have different data distributions. Common approaches to bridge the two distributions are selecting/reweighting instances, buildin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on evolutionary computation 2024, p.1-1
Hauptverfasser: Nguyen, Bach Hoai, Xue, Bing, Andreae, Peter, Zhang, Mengjie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on evolutionary computation
container_volume
creator Nguyen, Bach Hoai
Xue, Bing
Andreae, Peter
Zhang, Mengjie
description Domain adaptation reuses the knowledge learned from an existing (source) domain to classify unlabelled data from another related (target) domain. However, the two domains have different data distributions. Common approaches to bridge the two distributions are selecting/reweighting instances, building domain-invariant feature subspaces, or directly building adaptive classifiers. Recent domain adaptation work has shown that combining the above first two approaches before applying the third approach achieves better performance than performing each approach individually. However, most existing instance selection approaches are based on a ranking mechanism, ignore interdependences between instances, and require a pre-defined number of selected instances. Furthermore, adaptive classifiers are sensitive to their parameters which are challenging to optimise due to the lack of target labelled instances. This paper introduces a novel evolutionary instance selection approach for domain adaptation. We propose a compacted representation and an efficient fitness function for Particle Swarm Optimisation to automatically determine the number of selected instances while considering the interdependencies among instances. This paper also proposes to use multiple partial classifiers to build a more reliable and robust adaptive classifier. The results show that evolutionary instance selection selects better instances than the ranking approach. In cooperation with multiple partial classifiers, the proposed algorithm achieves better performance than nine state-of-the-art and well-known domain adaptation approaches.
doi_str_mv 10.1109/TEVC.2023.3346406
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TEVC_2023_3346406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10373555</ieee_id><sourcerecordid>10_1109_TEVC_2023_3346406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c133t-8c2823bcbdaa63e6314a59e0e2d7c33574544e4a355ce1e2af90e4d73be4f0793</originalsourceid><addsrcrecordid>eNpNkN1OwzAMhSMEEmPwAEhc5AU6kjrpz-VUBkwaAonxc1e81BVBXVsl2STenlbbBVe2bJ9z5I-xaylmUor8dr14L2axiGEGoBIlkhM2kbmSkRBxcjr0IsujNM0-z9mF9z9CSKVlPmFfi33X7ILtWnS_fNn6gK0h_koNmXHKP2z45k-7Jti-If6CLlhs-LzCPtg98aJB721tyXled47fdVu07WGPo8ElO6ux8XR1rFP2dr9YF4_R6vlhWcxXkZEAIcpMnMWwMZsKMQFKQCrUOQmKq9QA6FRppUghaG1IUox1LkhVKWxI1SLNYcrkwde4zntHddk7ux2eKqUoR0TliKgcEZVHRIPm5qCxRPTvHtIhRsMfWMBkiw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Evolutionary Instance Selection With Multiple Partial Adaptive Classifiers for Domain Adaptation</title><source>IEEE Electronic Library (IEL)</source><creator>Nguyen, Bach Hoai ; Xue, Bing ; Andreae, Peter ; Zhang, Mengjie</creator><creatorcontrib>Nguyen, Bach Hoai ; Xue, Bing ; Andreae, Peter ; Zhang, Mengjie</creatorcontrib><description>Domain adaptation reuses the knowledge learned from an existing (source) domain to classify unlabelled data from another related (target) domain. However, the two domains have different data distributions. Common approaches to bridge the two distributions are selecting/reweighting instances, building domain-invariant feature subspaces, or directly building adaptive classifiers. Recent domain adaptation work has shown that combining the above first two approaches before applying the third approach achieves better performance than performing each approach individually. However, most existing instance selection approaches are based on a ranking mechanism, ignore interdependences between instances, and require a pre-defined number of selected instances. Furthermore, adaptive classifiers are sensitive to their parameters which are challenging to optimise due to the lack of target labelled instances. This paper introduces a novel evolutionary instance selection approach for domain adaptation. We propose a compacted representation and an efficient fitness function for Particle Swarm Optimisation to automatically determine the number of selected instances while considering the interdependencies among instances. This paper also proposes to use multiple partial classifiers to build a more reliable and robust adaptive classifier. The results show that evolutionary instance selection selects better instances than the ranking approach. In cooperation with multiple partial classifiers, the proposed algorithm achieves better performance than nine state-of-the-art and well-known domain adaptation approaches.</description><identifier>ISSN: 1089-778X</identifier><identifier>EISSN: 1941-0026</identifier><identifier>DOI: 10.1109/TEVC.2023.3346406</identifier><identifier>CODEN: ITEVF5</identifier><language>eng</language><publisher>IEEE</publisher><subject>Buildings ; classification ; Classification algorithms ; Contracts ; Domain adaptation ; evolutionary computation ; Optimization ; particle swarm optimisation ; Particle swarm optimization ; Task analysis ; transfer learning</subject><ispartof>IEEE transactions on evolutionary computation, 2024, p.1-1</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6930-6863 ; 0000-0002-4865-8026 ; 0000-0003-4463-9538</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10373555$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10373555$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nguyen, Bach Hoai</creatorcontrib><creatorcontrib>Xue, Bing</creatorcontrib><creatorcontrib>Andreae, Peter</creatorcontrib><creatorcontrib>Zhang, Mengjie</creatorcontrib><title>Evolutionary Instance Selection With Multiple Partial Adaptive Classifiers for Domain Adaptation</title><title>IEEE transactions on evolutionary computation</title><addtitle>TEVC</addtitle><description>Domain adaptation reuses the knowledge learned from an existing (source) domain to classify unlabelled data from another related (target) domain. However, the two domains have different data distributions. Common approaches to bridge the two distributions are selecting/reweighting instances, building domain-invariant feature subspaces, or directly building adaptive classifiers. Recent domain adaptation work has shown that combining the above first two approaches before applying the third approach achieves better performance than performing each approach individually. However, most existing instance selection approaches are based on a ranking mechanism, ignore interdependences between instances, and require a pre-defined number of selected instances. Furthermore, adaptive classifiers are sensitive to their parameters which are challenging to optimise due to the lack of target labelled instances. This paper introduces a novel evolutionary instance selection approach for domain adaptation. We propose a compacted representation and an efficient fitness function for Particle Swarm Optimisation to automatically determine the number of selected instances while considering the interdependencies among instances. This paper also proposes to use multiple partial classifiers to build a more reliable and robust adaptive classifier. The results show that evolutionary instance selection selects better instances than the ranking approach. In cooperation with multiple partial classifiers, the proposed algorithm achieves better performance than nine state-of-the-art and well-known domain adaptation approaches.</description><subject>Buildings</subject><subject>classification</subject><subject>Classification algorithms</subject><subject>Contracts</subject><subject>Domain adaptation</subject><subject>evolutionary computation</subject><subject>Optimization</subject><subject>particle swarm optimisation</subject><subject>Particle swarm optimization</subject><subject>Task analysis</subject><subject>transfer learning</subject><issn>1089-778X</issn><issn>1941-0026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkN1OwzAMhSMEEmPwAEhc5AU6kjrpz-VUBkwaAonxc1e81BVBXVsl2STenlbbBVe2bJ9z5I-xaylmUor8dr14L2axiGEGoBIlkhM2kbmSkRBxcjr0IsujNM0-z9mF9z9CSKVlPmFfi33X7ILtWnS_fNn6gK0h_koNmXHKP2z45k-7Jti-If6CLlhs-LzCPtg98aJB721tyXled47fdVu07WGPo8ElO6ux8XR1rFP2dr9YF4_R6vlhWcxXkZEAIcpMnMWwMZsKMQFKQCrUOQmKq9QA6FRppUghaG1IUox1LkhVKWxI1SLNYcrkwde4zntHddk7ux2eKqUoR0TliKgcEZVHRIPm5qCxRPTvHtIhRsMfWMBkiw</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Nguyen, Bach Hoai</creator><creator>Xue, Bing</creator><creator>Andreae, Peter</creator><creator>Zhang, Mengjie</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6930-6863</orcidid><orcidid>https://orcid.org/0000-0002-4865-8026</orcidid><orcidid>https://orcid.org/0000-0003-4463-9538</orcidid></search><sort><creationdate>2024</creationdate><title>Evolutionary Instance Selection With Multiple Partial Adaptive Classifiers for Domain Adaptation</title><author>Nguyen, Bach Hoai ; Xue, Bing ; Andreae, Peter ; Zhang, Mengjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c133t-8c2823bcbdaa63e6314a59e0e2d7c33574544e4a355ce1e2af90e4d73be4f0793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Buildings</topic><topic>classification</topic><topic>Classification algorithms</topic><topic>Contracts</topic><topic>Domain adaptation</topic><topic>evolutionary computation</topic><topic>Optimization</topic><topic>particle swarm optimisation</topic><topic>Particle swarm optimization</topic><topic>Task analysis</topic><topic>transfer learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Bach Hoai</creatorcontrib><creatorcontrib>Xue, Bing</creatorcontrib><creatorcontrib>Andreae, Peter</creatorcontrib><creatorcontrib>Zhang, Mengjie</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on evolutionary computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nguyen, Bach Hoai</au><au>Xue, Bing</au><au>Andreae, Peter</au><au>Zhang, Mengjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionary Instance Selection With Multiple Partial Adaptive Classifiers for Domain Adaptation</atitle><jtitle>IEEE transactions on evolutionary computation</jtitle><stitle>TEVC</stitle><date>2024</date><risdate>2024</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><coden>ITEVF5</coden><abstract>Domain adaptation reuses the knowledge learned from an existing (source) domain to classify unlabelled data from another related (target) domain. However, the two domains have different data distributions. Common approaches to bridge the two distributions are selecting/reweighting instances, building domain-invariant feature subspaces, or directly building adaptive classifiers. Recent domain adaptation work has shown that combining the above first two approaches before applying the third approach achieves better performance than performing each approach individually. However, most existing instance selection approaches are based on a ranking mechanism, ignore interdependences between instances, and require a pre-defined number of selected instances. Furthermore, adaptive classifiers are sensitive to their parameters which are challenging to optimise due to the lack of target labelled instances. This paper introduces a novel evolutionary instance selection approach for domain adaptation. We propose a compacted representation and an efficient fitness function for Particle Swarm Optimisation to automatically determine the number of selected instances while considering the interdependencies among instances. This paper also proposes to use multiple partial classifiers to build a more reliable and robust adaptive classifier. The results show that evolutionary instance selection selects better instances than the ranking approach. In cooperation with multiple partial classifiers, the proposed algorithm achieves better performance than nine state-of-the-art and well-known domain adaptation approaches.</abstract><pub>IEEE</pub><doi>10.1109/TEVC.2023.3346406</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-6930-6863</orcidid><orcidid>https://orcid.org/0000-0002-4865-8026</orcidid><orcidid>https://orcid.org/0000-0003-4463-9538</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-778X
ispartof IEEE transactions on evolutionary computation, 2024, p.1-1
issn 1089-778X
1941-0026
language eng
recordid cdi_crossref_primary_10_1109_TEVC_2023_3346406
source IEEE Electronic Library (IEL)
subjects Buildings
classification
Classification algorithms
Contracts
Domain adaptation
evolutionary computation
Optimization
particle swarm optimisation
Particle swarm optimization
Task analysis
transfer learning
title Evolutionary Instance Selection With Multiple Partial Adaptive Classifiers for Domain Adaptation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T00%3A22%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionary%20Instance%20Selection%20With%20Multiple%20Partial%20Adaptive%20Classifiers%20for%20Domain%20Adaptation&rft.jtitle=IEEE%20transactions%20on%20evolutionary%20computation&rft.au=Nguyen,%20Bach%20Hoai&rft.date=2024&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1089-778X&rft.eissn=1941-0026&rft.coden=ITEVF5&rft_id=info:doi/10.1109/TEVC.2023.3346406&rft_dat=%3Ccrossref_RIE%3E10_1109_TEVC_2023_3346406%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10373555&rfr_iscdi=true