PSO-X: A Component-Based Framework for the Automatic Design of Particle Swarm Optimization Algorithms
The particle swarm optimization (PSO) algorithm has been the object of many studies and modifications for more than 25 years. Ranging from small refinements to the incorporation of sophisticated novel ideas, the majority of modifications proposed to this algorithm have been the result of a manual pr...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on evolutionary computation 2022-06, Vol.26 (3), p.402-416 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 416 |
---|---|
container_issue | 3 |
container_start_page | 402 |
container_title | IEEE transactions on evolutionary computation |
container_volume | 26 |
creator | Camacho-Villalon, Christian L. Dorigo, Marco Stutzle, Thomas |
description | The particle swarm optimization (PSO) algorithm has been the object of many studies and modifications for more than 25 years. Ranging from small refinements to the incorporation of sophisticated novel ideas, the majority of modifications proposed to this algorithm have been the result of a manual process in which developers try new designs based on their own knowledge and expertise. However, manually introducing changes is very time consuming and makes the systematic exploration of all the possible algorithm configurations a difficult process. In this article, we propose to use automatic design to overcome the limitations of having to manually find performing PSO algorithms. We develop a flexible software framework for PSO, called PSO-X, which is specifically designed to integrate the use of automatic configuration tools into the process of generating PSO algorithms. Our framework embodies a large number of algorithm components developed over more than 25 years of research that have allowed PSO to deal with a large variety of problems, and uses irace , a state-of-the-art configuration tool, to automatize the task of selecting and configuring PSO algorithms starting from these components. We show that irace is capable of finding high-performing instances of PSO algorithms never proposed before. |
doi_str_mv | 10.1109/TEVC.2021.3102863 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TEVC_2021_3102863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9507530</ieee_id><sourcerecordid>2670204688</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-9d60fc91642c022f82c757bbb96ffae8e8484a0d9db5d4bfb81611f71eb6141b3</originalsourceid><addsrcrecordid>eNo9kMFKw0AQhoMoWKsPIF4WPKfObJLNrrcYWxUKLbRKb2GT7LbRJht3U4o-vSktnuZn-P4Z-DzvFmGECOJhOf5IRxQojgIEyllw5g1QhOgDUHbeZ-DCj2O-uvSunPsEwDBCMfDUfDHzV48kIampW9OopvOfpFMlmVhZq72xX0QbS7qNIsmuM7XsqoI8K1etG2I0mUvbL7aKLPbS1mTWdlVd_faQaUiyXRtbdZvaXXsXWm6dujnNofc-GS_TV386e3lLk6lfBAHrfFEy0IVAFtICKNWcFnEU53kumNZSccVDHkooRZlHZZjrnCND1DGqnGGIeTD07o93W2u-d8p12afZ2aZ_mVEWA4WQcd5TeKQKa5yzSmetrWppfzKE7GAzO9jMDjazk82-c3fsVEqpf15EEEcBBH_SMnC5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2670204688</pqid></control><display><type>article</type><title>PSO-X: A Component-Based Framework for the Automatic Design of Particle Swarm Optimization Algorithms</title><source>IEEE Electronic Library (IEL)</source><creator>Camacho-Villalon, Christian L. ; Dorigo, Marco ; Stutzle, Thomas</creator><creatorcontrib>Camacho-Villalon, Christian L. ; Dorigo, Marco ; Stutzle, Thomas</creatorcontrib><description>The particle swarm optimization (PSO) algorithm has been the object of many studies and modifications for more than 25 years. Ranging from small refinements to the incorporation of sophisticated novel ideas, the majority of modifications proposed to this algorithm have been the result of a manual process in which developers try new designs based on their own knowledge and expertise. However, manually introducing changes is very time consuming and makes the systematic exploration of all the possible algorithm configurations a difficult process. In this article, we propose to use automatic design to overcome the limitations of having to manually find performing PSO algorithms. We develop a flexible software framework for PSO, called PSO-X, which is specifically designed to integrate the use of automatic configuration tools into the process of generating PSO algorithms. Our framework embodies a large number of algorithm components developed over more than 25 years of research that have allowed PSO to deal with a large variety of problems, and uses irace , a state-of-the-art configuration tool, to automatize the task of selecting and configuring PSO algorithms starting from these components. We show that irace is capable of finding high-performing instances of PSO algorithms never proposed before.</description><identifier>ISSN: 1089-778X</identifier><identifier>EISSN: 1941-0026</identifier><identifier>DOI: 10.1109/TEVC.2021.3102863</identifier><identifier>CODEN: ITEVF5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Automatic algorithm design ; Configurations ; continuous optimization ; Design ; Design optimization ; Manuals ; Optimization ; Particle swarm optimization ; particle swarm optimization (PSO) ; Software ; Software algorithms ; Topology</subject><ispartof>IEEE transactions on evolutionary computation, 2022-06, Vol.26 (3), p.402-416</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-9d60fc91642c022f82c757bbb96ffae8e8484a0d9db5d4bfb81611f71eb6141b3</citedby><cites>FETCH-LOGICAL-c336t-9d60fc91642c022f82c757bbb96ffae8e8484a0d9db5d4bfb81611f71eb6141b3</cites><orcidid>0000-0002-5820-0473 ; 0000-0002-3971-0507 ; 0000-0002-0182-3469</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9507530$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Camacho-Villalon, Christian L.</creatorcontrib><creatorcontrib>Dorigo, Marco</creatorcontrib><creatorcontrib>Stutzle, Thomas</creatorcontrib><title>PSO-X: A Component-Based Framework for the Automatic Design of Particle Swarm Optimization Algorithms</title><title>IEEE transactions on evolutionary computation</title><addtitle>TEVC</addtitle><description>The particle swarm optimization (PSO) algorithm has been the object of many studies and modifications for more than 25 years. Ranging from small refinements to the incorporation of sophisticated novel ideas, the majority of modifications proposed to this algorithm have been the result of a manual process in which developers try new designs based on their own knowledge and expertise. However, manually introducing changes is very time consuming and makes the systematic exploration of all the possible algorithm configurations a difficult process. In this article, we propose to use automatic design to overcome the limitations of having to manually find performing PSO algorithms. We develop a flexible software framework for PSO, called PSO-X, which is specifically designed to integrate the use of automatic configuration tools into the process of generating PSO algorithms. Our framework embodies a large number of algorithm components developed over more than 25 years of research that have allowed PSO to deal with a large variety of problems, and uses irace , a state-of-the-art configuration tool, to automatize the task of selecting and configuring PSO algorithms starting from these components. We show that irace is capable of finding high-performing instances of PSO algorithms never proposed before.</description><subject>Algorithms</subject><subject>Automatic algorithm design</subject><subject>Configurations</subject><subject>continuous optimization</subject><subject>Design</subject><subject>Design optimization</subject><subject>Manuals</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>particle swarm optimization (PSO)</subject><subject>Software</subject><subject>Software algorithms</subject><subject>Topology</subject><issn>1089-778X</issn><issn>1941-0026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kMFKw0AQhoMoWKsPIF4WPKfObJLNrrcYWxUKLbRKb2GT7LbRJht3U4o-vSktnuZn-P4Z-DzvFmGECOJhOf5IRxQojgIEyllw5g1QhOgDUHbeZ-DCj2O-uvSunPsEwDBCMfDUfDHzV48kIampW9OopvOfpFMlmVhZq72xX0QbS7qNIsmuM7XsqoI8K1etG2I0mUvbL7aKLPbS1mTWdlVd_faQaUiyXRtbdZvaXXsXWm6dujnNofc-GS_TV386e3lLk6lfBAHrfFEy0IVAFtICKNWcFnEU53kumNZSccVDHkooRZlHZZjrnCND1DGqnGGIeTD07o93W2u-d8p12afZ2aZ_mVEWA4WQcd5TeKQKa5yzSmetrWppfzKE7GAzO9jMDjazk82-c3fsVEqpf15EEEcBBH_SMnC5</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Camacho-Villalon, Christian L.</creator><creator>Dorigo, Marco</creator><creator>Stutzle, Thomas</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5820-0473</orcidid><orcidid>https://orcid.org/0000-0002-3971-0507</orcidid><orcidid>https://orcid.org/0000-0002-0182-3469</orcidid></search><sort><creationdate>20220601</creationdate><title>PSO-X: A Component-Based Framework for the Automatic Design of Particle Swarm Optimization Algorithms</title><author>Camacho-Villalon, Christian L. ; Dorigo, Marco ; Stutzle, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-9d60fc91642c022f82c757bbb96ffae8e8484a0d9db5d4bfb81611f71eb6141b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Automatic algorithm design</topic><topic>Configurations</topic><topic>continuous optimization</topic><topic>Design</topic><topic>Design optimization</topic><topic>Manuals</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>particle swarm optimization (PSO)</topic><topic>Software</topic><topic>Software algorithms</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Camacho-Villalon, Christian L.</creatorcontrib><creatorcontrib>Dorigo, Marco</creatorcontrib><creatorcontrib>Stutzle, Thomas</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on evolutionary computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Camacho-Villalon, Christian L.</au><au>Dorigo, Marco</au><au>Stutzle, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PSO-X: A Component-Based Framework for the Automatic Design of Particle Swarm Optimization Algorithms</atitle><jtitle>IEEE transactions on evolutionary computation</jtitle><stitle>TEVC</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>26</volume><issue>3</issue><spage>402</spage><epage>416</epage><pages>402-416</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><coden>ITEVF5</coden><abstract>The particle swarm optimization (PSO) algorithm has been the object of many studies and modifications for more than 25 years. Ranging from small refinements to the incorporation of sophisticated novel ideas, the majority of modifications proposed to this algorithm have been the result of a manual process in which developers try new designs based on their own knowledge and expertise. However, manually introducing changes is very time consuming and makes the systematic exploration of all the possible algorithm configurations a difficult process. In this article, we propose to use automatic design to overcome the limitations of having to manually find performing PSO algorithms. We develop a flexible software framework for PSO, called PSO-X, which is specifically designed to integrate the use of automatic configuration tools into the process of generating PSO algorithms. Our framework embodies a large number of algorithm components developed over more than 25 years of research that have allowed PSO to deal with a large variety of problems, and uses irace , a state-of-the-art configuration tool, to automatize the task of selecting and configuring PSO algorithms starting from these components. We show that irace is capable of finding high-performing instances of PSO algorithms never proposed before.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEVC.2021.3102863</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5820-0473</orcidid><orcidid>https://orcid.org/0000-0002-3971-0507</orcidid><orcidid>https://orcid.org/0000-0002-0182-3469</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1089-778X |
ispartof | IEEE transactions on evolutionary computation, 2022-06, Vol.26 (3), p.402-416 |
issn | 1089-778X 1941-0026 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TEVC_2021_3102863 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Automatic algorithm design Configurations continuous optimization Design Design optimization Manuals Optimization Particle swarm optimization particle swarm optimization (PSO) Software Software algorithms Topology |
title | PSO-X: A Component-Based Framework for the Automatic Design of Particle Swarm Optimization Algorithms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T03%3A53%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PSO-X:%20A%20Component-Based%20Framework%20for%20the%20Automatic%20Design%20of%20Particle%20Swarm%20Optimization%20Algorithms&rft.jtitle=IEEE%20transactions%20on%20evolutionary%20computation&rft.au=Camacho-Villalon,%20Christian%20L.&rft.date=2022-06-01&rft.volume=26&rft.issue=3&rft.spage=402&rft.epage=416&rft.pages=402-416&rft.issn=1089-778X&rft.eissn=1941-0026&rft.coden=ITEVF5&rft_id=info:doi/10.1109/TEVC.2021.3102863&rft_dat=%3Cproquest_cross%3E2670204688%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2670204688&rft_id=info:pmid/&rft_ieee_id=9507530&rfr_iscdi=true |