PSO-X: A Component-Based Framework for the Automatic Design of Particle Swarm Optimization Algorithms

The particle swarm optimization (PSO) algorithm has been the object of many studies and modifications for more than 25 years. Ranging from small refinements to the incorporation of sophisticated novel ideas, the majority of modifications proposed to this algorithm have been the result of a manual pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on evolutionary computation 2022-06, Vol.26 (3), p.402-416
Hauptverfasser: Camacho-Villalon, Christian L., Dorigo, Marco, Stutzle, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 416
container_issue 3
container_start_page 402
container_title IEEE transactions on evolutionary computation
container_volume 26
creator Camacho-Villalon, Christian L.
Dorigo, Marco
Stutzle, Thomas
description The particle swarm optimization (PSO) algorithm has been the object of many studies and modifications for more than 25 years. Ranging from small refinements to the incorporation of sophisticated novel ideas, the majority of modifications proposed to this algorithm have been the result of a manual process in which developers try new designs based on their own knowledge and expertise. However, manually introducing changes is very time consuming and makes the systematic exploration of all the possible algorithm configurations a difficult process. In this article, we propose to use automatic design to overcome the limitations of having to manually find performing PSO algorithms. We develop a flexible software framework for PSO, called PSO-X, which is specifically designed to integrate the use of automatic configuration tools into the process of generating PSO algorithms. Our framework embodies a large number of algorithm components developed over more than 25 years of research that have allowed PSO to deal with a large variety of problems, and uses irace , a state-of-the-art configuration tool, to automatize the task of selecting and configuring PSO algorithms starting from these components. We show that irace is capable of finding high-performing instances of PSO algorithms never proposed before.
doi_str_mv 10.1109/TEVC.2021.3102863
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TEVC_2021_3102863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9507530</ieee_id><sourcerecordid>2670204688</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-9d60fc91642c022f82c757bbb96ffae8e8484a0d9db5d4bfb81611f71eb6141b3</originalsourceid><addsrcrecordid>eNo9kMFKw0AQhoMoWKsPIF4WPKfObJLNrrcYWxUKLbRKb2GT7LbRJht3U4o-vSktnuZn-P4Z-DzvFmGECOJhOf5IRxQojgIEyllw5g1QhOgDUHbeZ-DCj2O-uvSunPsEwDBCMfDUfDHzV48kIampW9OopvOfpFMlmVhZq72xX0QbS7qNIsmuM7XsqoI8K1etG2I0mUvbL7aKLPbS1mTWdlVd_faQaUiyXRtbdZvaXXsXWm6dujnNofc-GS_TV386e3lLk6lfBAHrfFEy0IVAFtICKNWcFnEU53kumNZSccVDHkooRZlHZZjrnCND1DGqnGGIeTD07o93W2u-d8p12afZ2aZ_mVEWA4WQcd5TeKQKa5yzSmetrWppfzKE7GAzO9jMDjazk82-c3fsVEqpf15EEEcBBH_SMnC5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2670204688</pqid></control><display><type>article</type><title>PSO-X: A Component-Based Framework for the Automatic Design of Particle Swarm Optimization Algorithms</title><source>IEEE Electronic Library (IEL)</source><creator>Camacho-Villalon, Christian L. ; Dorigo, Marco ; Stutzle, Thomas</creator><creatorcontrib>Camacho-Villalon, Christian L. ; Dorigo, Marco ; Stutzle, Thomas</creatorcontrib><description>The particle swarm optimization (PSO) algorithm has been the object of many studies and modifications for more than 25 years. Ranging from small refinements to the incorporation of sophisticated novel ideas, the majority of modifications proposed to this algorithm have been the result of a manual process in which developers try new designs based on their own knowledge and expertise. However, manually introducing changes is very time consuming and makes the systematic exploration of all the possible algorithm configurations a difficult process. In this article, we propose to use automatic design to overcome the limitations of having to manually find performing PSO algorithms. We develop a flexible software framework for PSO, called PSO-X, which is specifically designed to integrate the use of automatic configuration tools into the process of generating PSO algorithms. Our framework embodies a large number of algorithm components developed over more than 25 years of research that have allowed PSO to deal with a large variety of problems, and uses irace , a state-of-the-art configuration tool, to automatize the task of selecting and configuring PSO algorithms starting from these components. We show that irace is capable of finding high-performing instances of PSO algorithms never proposed before.</description><identifier>ISSN: 1089-778X</identifier><identifier>EISSN: 1941-0026</identifier><identifier>DOI: 10.1109/TEVC.2021.3102863</identifier><identifier>CODEN: ITEVF5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Automatic algorithm design ; Configurations ; continuous optimization ; Design ; Design optimization ; Manuals ; Optimization ; Particle swarm optimization ; particle swarm optimization (PSO) ; Software ; Software algorithms ; Topology</subject><ispartof>IEEE transactions on evolutionary computation, 2022-06, Vol.26 (3), p.402-416</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-9d60fc91642c022f82c757bbb96ffae8e8484a0d9db5d4bfb81611f71eb6141b3</citedby><cites>FETCH-LOGICAL-c336t-9d60fc91642c022f82c757bbb96ffae8e8484a0d9db5d4bfb81611f71eb6141b3</cites><orcidid>0000-0002-5820-0473 ; 0000-0002-3971-0507 ; 0000-0002-0182-3469</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9507530$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Camacho-Villalon, Christian L.</creatorcontrib><creatorcontrib>Dorigo, Marco</creatorcontrib><creatorcontrib>Stutzle, Thomas</creatorcontrib><title>PSO-X: A Component-Based Framework for the Automatic Design of Particle Swarm Optimization Algorithms</title><title>IEEE transactions on evolutionary computation</title><addtitle>TEVC</addtitle><description>The particle swarm optimization (PSO) algorithm has been the object of many studies and modifications for more than 25 years. Ranging from small refinements to the incorporation of sophisticated novel ideas, the majority of modifications proposed to this algorithm have been the result of a manual process in which developers try new designs based on their own knowledge and expertise. However, manually introducing changes is very time consuming and makes the systematic exploration of all the possible algorithm configurations a difficult process. In this article, we propose to use automatic design to overcome the limitations of having to manually find performing PSO algorithms. We develop a flexible software framework for PSO, called PSO-X, which is specifically designed to integrate the use of automatic configuration tools into the process of generating PSO algorithms. Our framework embodies a large number of algorithm components developed over more than 25 years of research that have allowed PSO to deal with a large variety of problems, and uses irace , a state-of-the-art configuration tool, to automatize the task of selecting and configuring PSO algorithms starting from these components. We show that irace is capable of finding high-performing instances of PSO algorithms never proposed before.</description><subject>Algorithms</subject><subject>Automatic algorithm design</subject><subject>Configurations</subject><subject>continuous optimization</subject><subject>Design</subject><subject>Design optimization</subject><subject>Manuals</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>particle swarm optimization (PSO)</subject><subject>Software</subject><subject>Software algorithms</subject><subject>Topology</subject><issn>1089-778X</issn><issn>1941-0026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kMFKw0AQhoMoWKsPIF4WPKfObJLNrrcYWxUKLbRKb2GT7LbRJht3U4o-vSktnuZn-P4Z-DzvFmGECOJhOf5IRxQojgIEyllw5g1QhOgDUHbeZ-DCj2O-uvSunPsEwDBCMfDUfDHzV48kIampW9OopvOfpFMlmVhZq72xX0QbS7qNIsmuM7XsqoI8K1etG2I0mUvbL7aKLPbS1mTWdlVd_faQaUiyXRtbdZvaXXsXWm6dujnNofc-GS_TV386e3lLk6lfBAHrfFEy0IVAFtICKNWcFnEU53kumNZSccVDHkooRZlHZZjrnCND1DGqnGGIeTD07o93W2u-d8p12afZ2aZ_mVEWA4WQcd5TeKQKa5yzSmetrWppfzKE7GAzO9jMDjazk82-c3fsVEqpf15EEEcBBH_SMnC5</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Camacho-Villalon, Christian L.</creator><creator>Dorigo, Marco</creator><creator>Stutzle, Thomas</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5820-0473</orcidid><orcidid>https://orcid.org/0000-0002-3971-0507</orcidid><orcidid>https://orcid.org/0000-0002-0182-3469</orcidid></search><sort><creationdate>20220601</creationdate><title>PSO-X: A Component-Based Framework for the Automatic Design of Particle Swarm Optimization Algorithms</title><author>Camacho-Villalon, Christian L. ; Dorigo, Marco ; Stutzle, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-9d60fc91642c022f82c757bbb96ffae8e8484a0d9db5d4bfb81611f71eb6141b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Automatic algorithm design</topic><topic>Configurations</topic><topic>continuous optimization</topic><topic>Design</topic><topic>Design optimization</topic><topic>Manuals</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>particle swarm optimization (PSO)</topic><topic>Software</topic><topic>Software algorithms</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Camacho-Villalon, Christian L.</creatorcontrib><creatorcontrib>Dorigo, Marco</creatorcontrib><creatorcontrib>Stutzle, Thomas</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on evolutionary computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Camacho-Villalon, Christian L.</au><au>Dorigo, Marco</au><au>Stutzle, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PSO-X: A Component-Based Framework for the Automatic Design of Particle Swarm Optimization Algorithms</atitle><jtitle>IEEE transactions on evolutionary computation</jtitle><stitle>TEVC</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>26</volume><issue>3</issue><spage>402</spage><epage>416</epage><pages>402-416</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><coden>ITEVF5</coden><abstract>The particle swarm optimization (PSO) algorithm has been the object of many studies and modifications for more than 25 years. Ranging from small refinements to the incorporation of sophisticated novel ideas, the majority of modifications proposed to this algorithm have been the result of a manual process in which developers try new designs based on their own knowledge and expertise. However, manually introducing changes is very time consuming and makes the systematic exploration of all the possible algorithm configurations a difficult process. In this article, we propose to use automatic design to overcome the limitations of having to manually find performing PSO algorithms. We develop a flexible software framework for PSO, called PSO-X, which is specifically designed to integrate the use of automatic configuration tools into the process of generating PSO algorithms. Our framework embodies a large number of algorithm components developed over more than 25 years of research that have allowed PSO to deal with a large variety of problems, and uses irace , a state-of-the-art configuration tool, to automatize the task of selecting and configuring PSO algorithms starting from these components. We show that irace is capable of finding high-performing instances of PSO algorithms never proposed before.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEVC.2021.3102863</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5820-0473</orcidid><orcidid>https://orcid.org/0000-0002-3971-0507</orcidid><orcidid>https://orcid.org/0000-0002-0182-3469</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1089-778X
ispartof IEEE transactions on evolutionary computation, 2022-06, Vol.26 (3), p.402-416
issn 1089-778X
1941-0026
language eng
recordid cdi_crossref_primary_10_1109_TEVC_2021_3102863
source IEEE Electronic Library (IEL)
subjects Algorithms
Automatic algorithm design
Configurations
continuous optimization
Design
Design optimization
Manuals
Optimization
Particle swarm optimization
particle swarm optimization (PSO)
Software
Software algorithms
Topology
title PSO-X: A Component-Based Framework for the Automatic Design of Particle Swarm Optimization Algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T03%3A53%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PSO-X:%20A%20Component-Based%20Framework%20for%20the%20Automatic%20Design%20of%20Particle%20Swarm%20Optimization%20Algorithms&rft.jtitle=IEEE%20transactions%20on%20evolutionary%20computation&rft.au=Camacho-Villalon,%20Christian%20L.&rft.date=2022-06-01&rft.volume=26&rft.issue=3&rft.spage=402&rft.epage=416&rft.pages=402-416&rft.issn=1089-778X&rft.eissn=1941-0026&rft.coden=ITEVF5&rft_id=info:doi/10.1109/TEVC.2021.3102863&rft_dat=%3Cproquest_cross%3E2670204688%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2670204688&rft_id=info:pmid/&rft_ieee_id=9507530&rfr_iscdi=true