A Primary Theoretical Study on Decomposition-Based Multiobjective Evolutionary Algorithms

Decomposition-based multiobjective evolutionary algorithms (MOEAs) have been studied a lot and have been widely and successfully used in practice. However, there are no related theoretical studies on this kind of MOEAs. In this paper, we theoretically analyze the MOEAs based on decomposition. First,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on evolutionary computation 2016-08, Vol.20 (4), p.563-576
Hauptverfasser: Li, Yuan-Long, Zhou, Yu-Ren, Zhan, Zhi-Hui, Zhang, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 576
container_issue 4
container_start_page 563
container_title IEEE transactions on evolutionary computation
container_volume 20
creator Li, Yuan-Long
Zhou, Yu-Ren
Zhan, Zhi-Hui
Zhang, Jun
description Decomposition-based multiobjective evolutionary algorithms (MOEAs) have been studied a lot and have been widely and successfully used in practice. However, there are no related theoretical studies on this kind of MOEAs. In this paper, we theoretically analyze the MOEAs based on decomposition. First, we analyze the runtime complexity with two basic simple instances. In both cases the Pareto front have oneto-one map to the decomposed subproblems or not. Second, we analyze the runtime complexity on two difficult instances with bad neighborhood relations in fitness space or decision space. Our studies show that: 1) in certain cases, polynomialsized evenly distributed weight parameters-based decomposition cannot map each point in a polynomial sized Pareto front to a subproblem; 2) an ideal serialized algorithm can be very efficient on some simple instances; 3) the standard MOEA based on decomposition can benefit a runtime cut of a constant fraction from its neighborhood coevolution scheme; and 4) the standard MOEA based on decomposition performs well on difficult instances because both the Pareto domination-based and the scalar subproblem-based search schemes are combined in a proper way.
doi_str_mv 10.1109/TEVC.2015.2501315
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TEVC_2015_2501315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7329972</ieee_id><sourcerecordid>1835578764</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-5927dbb8af236c859971196d04a30ed8f5637e875bf0ade010d0c03a24e865bd3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQQIMoWKs_QLwEvHhJndnNZnePtdYPUBSsoqewSSY2JenWbFLovzchxYOnmWHeDDPP884RJoigrxfzj9mEAYoJE4AcxYE3Qh1iAMCiwy4HpQMp1eexd-LcCgBDgXrkfU3917qoTL3zF0uyNTVFakr_rWmznW_X_i2lttpYVzSFXQc3xlHmP7dlVyUrSptiS_58a8u2b_dLpuW3rYtmWblT7yg3paOzfRx773fzxewheHq5f5xNn4KU66gJhGYySxJlcsajVAmtJaKOMggNB8pULiIuSUmR5GAyAoQMUuCGhaQikWR87F0Neze1_WnJNXFVuJTK0qzJti5GxYWQSkZhh17-Q1e2rdfddR0FCpWQTHQUDlRaW-dqyuPNYChGiHvZcS877mXHe9ndzMUwUxDRHy85695h_BdS6ns6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808185725</pqid></control><display><type>article</type><title>A Primary Theoretical Study on Decomposition-Based Multiobjective Evolutionary Algorithms</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Yuan-Long ; Zhou, Yu-Ren ; Zhan, Zhi-Hui ; Zhang, Jun</creator><creatorcontrib>Li, Yuan-Long ; Zhou, Yu-Ren ; Zhan, Zhi-Hui ; Zhang, Jun</creatorcontrib><description>Decomposition-based multiobjective evolutionary algorithms (MOEAs) have been studied a lot and have been widely and successfully used in practice. However, there are no related theoretical studies on this kind of MOEAs. In this paper, we theoretically analyze the MOEAs based on decomposition. First, we analyze the runtime complexity with two basic simple instances. In both cases the Pareto front have oneto-one map to the decomposed subproblems or not. Second, we analyze the runtime complexity on two difficult instances with bad neighborhood relations in fitness space or decision space. Our studies show that: 1) in certain cases, polynomialsized evenly distributed weight parameters-based decomposition cannot map each point in a polynomial sized Pareto front to a subproblem; 2) an ideal serialized algorithm can be very efficient on some simple instances; 3) the standard MOEA based on decomposition can benefit a runtime cut of a constant fraction from its neighborhood coevolution scheme; and 4) the standard MOEA based on decomposition performs well on difficult instances because both the Pareto domination-based and the scalar subproblem-based search schemes are combined in a proper way.</description><identifier>ISSN: 1089-778X</identifier><identifier>EISSN: 1941-0026</identifier><identifier>DOI: 10.1109/TEVC.2015.2501315</identifier><identifier>CODEN: ITEVF5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithm design and analysis ; Complexity ; Complexity theory ; Constants ; Decomposition ; Decomposition-based multiobjective evolutionary algorithms (MOEAs) ; Evolutionary algorithms ; Evolutionary computation ; Optimization ; Pareto optimality ; Polynomials ; Run time (computers) ; Runtime ; runtime analysis ; Sociology ; Statistics ; theoretical study</subject><ispartof>IEEE transactions on evolutionary computation, 2016-08, Vol.20 (4), p.563-576</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-5927dbb8af236c859971196d04a30ed8f5637e875bf0ade010d0c03a24e865bd3</citedby><cites>FETCH-LOGICAL-c396t-5927dbb8af236c859971196d04a30ed8f5637e875bf0ade010d0c03a24e865bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7329972$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7329972$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Yuan-Long</creatorcontrib><creatorcontrib>Zhou, Yu-Ren</creatorcontrib><creatorcontrib>Zhan, Zhi-Hui</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><title>A Primary Theoretical Study on Decomposition-Based Multiobjective Evolutionary Algorithms</title><title>IEEE transactions on evolutionary computation</title><addtitle>TEVC</addtitle><description>Decomposition-based multiobjective evolutionary algorithms (MOEAs) have been studied a lot and have been widely and successfully used in practice. However, there are no related theoretical studies on this kind of MOEAs. In this paper, we theoretically analyze the MOEAs based on decomposition. First, we analyze the runtime complexity with two basic simple instances. In both cases the Pareto front have oneto-one map to the decomposed subproblems or not. Second, we analyze the runtime complexity on two difficult instances with bad neighborhood relations in fitness space or decision space. Our studies show that: 1) in certain cases, polynomialsized evenly distributed weight parameters-based decomposition cannot map each point in a polynomial sized Pareto front to a subproblem; 2) an ideal serialized algorithm can be very efficient on some simple instances; 3) the standard MOEA based on decomposition can benefit a runtime cut of a constant fraction from its neighborhood coevolution scheme; and 4) the standard MOEA based on decomposition performs well on difficult instances because both the Pareto domination-based and the scalar subproblem-based search schemes are combined in a proper way.</description><subject>Algorithm design and analysis</subject><subject>Complexity</subject><subject>Complexity theory</subject><subject>Constants</subject><subject>Decomposition</subject><subject>Decomposition-based multiobjective evolutionary algorithms (MOEAs)</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>Optimization</subject><subject>Pareto optimality</subject><subject>Polynomials</subject><subject>Run time (computers)</subject><subject>Runtime</subject><subject>runtime analysis</subject><subject>Sociology</subject><subject>Statistics</subject><subject>theoretical study</subject><issn>1089-778X</issn><issn>1941-0026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQQIMoWKs_QLwEvHhJndnNZnePtdYPUBSsoqewSSY2JenWbFLovzchxYOnmWHeDDPP884RJoigrxfzj9mEAYoJE4AcxYE3Qh1iAMCiwy4HpQMp1eexd-LcCgBDgXrkfU3917qoTL3zF0uyNTVFakr_rWmznW_X_i2lttpYVzSFXQc3xlHmP7dlVyUrSptiS_58a8u2b_dLpuW3rYtmWblT7yg3paOzfRx773fzxewheHq5f5xNn4KU66gJhGYySxJlcsajVAmtJaKOMggNB8pULiIuSUmR5GAyAoQMUuCGhaQikWR87F0Neze1_WnJNXFVuJTK0qzJti5GxYWQSkZhh17-Q1e2rdfddR0FCpWQTHQUDlRaW-dqyuPNYChGiHvZcS877mXHe9ndzMUwUxDRHy85695h_BdS6ns6</recordid><startdate>201608</startdate><enddate>201608</enddate><creator>Li, Yuan-Long</creator><creator>Zhou, Yu-Ren</creator><creator>Zhan, Zhi-Hui</creator><creator>Zhang, Jun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201608</creationdate><title>A Primary Theoretical Study on Decomposition-Based Multiobjective Evolutionary Algorithms</title><author>Li, Yuan-Long ; Zhou, Yu-Ren ; Zhan, Zhi-Hui ; Zhang, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-5927dbb8af236c859971196d04a30ed8f5637e875bf0ade010d0c03a24e865bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithm design and analysis</topic><topic>Complexity</topic><topic>Complexity theory</topic><topic>Constants</topic><topic>Decomposition</topic><topic>Decomposition-based multiobjective evolutionary algorithms (MOEAs)</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>Optimization</topic><topic>Pareto optimality</topic><topic>Polynomials</topic><topic>Run time (computers)</topic><topic>Runtime</topic><topic>runtime analysis</topic><topic>Sociology</topic><topic>Statistics</topic><topic>theoretical study</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yuan-Long</creatorcontrib><creatorcontrib>Zhou, Yu-Ren</creatorcontrib><creatorcontrib>Zhan, Zhi-Hui</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on evolutionary computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Yuan-Long</au><au>Zhou, Yu-Ren</au><au>Zhan, Zhi-Hui</au><au>Zhang, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Primary Theoretical Study on Decomposition-Based Multiobjective Evolutionary Algorithms</atitle><jtitle>IEEE transactions on evolutionary computation</jtitle><stitle>TEVC</stitle><date>2016-08</date><risdate>2016</risdate><volume>20</volume><issue>4</issue><spage>563</spage><epage>576</epage><pages>563-576</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><coden>ITEVF5</coden><abstract>Decomposition-based multiobjective evolutionary algorithms (MOEAs) have been studied a lot and have been widely and successfully used in practice. However, there are no related theoretical studies on this kind of MOEAs. In this paper, we theoretically analyze the MOEAs based on decomposition. First, we analyze the runtime complexity with two basic simple instances. In both cases the Pareto front have oneto-one map to the decomposed subproblems or not. Second, we analyze the runtime complexity on two difficult instances with bad neighborhood relations in fitness space or decision space. Our studies show that: 1) in certain cases, polynomialsized evenly distributed weight parameters-based decomposition cannot map each point in a polynomial sized Pareto front to a subproblem; 2) an ideal serialized algorithm can be very efficient on some simple instances; 3) the standard MOEA based on decomposition can benefit a runtime cut of a constant fraction from its neighborhood coevolution scheme; and 4) the standard MOEA based on decomposition performs well on difficult instances because both the Pareto domination-based and the scalar subproblem-based search schemes are combined in a proper way.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEVC.2015.2501315</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-778X
ispartof IEEE transactions on evolutionary computation, 2016-08, Vol.20 (4), p.563-576
issn 1089-778X
1941-0026
language eng
recordid cdi_crossref_primary_10_1109_TEVC_2015_2501315
source IEEE Electronic Library (IEL)
subjects Algorithm design and analysis
Complexity
Complexity theory
Constants
Decomposition
Decomposition-based multiobjective evolutionary algorithms (MOEAs)
Evolutionary algorithms
Evolutionary computation
Optimization
Pareto optimality
Polynomials
Run time (computers)
Runtime
runtime analysis
Sociology
Statistics
theoretical study
title A Primary Theoretical Study on Decomposition-Based Multiobjective Evolutionary Algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T04%3A48%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Primary%20Theoretical%20Study%20on%20Decomposition-Based%20Multiobjective%20Evolutionary%20Algorithms&rft.jtitle=IEEE%20transactions%20on%20evolutionary%20computation&rft.au=Li,%20Yuan-Long&rft.date=2016-08&rft.volume=20&rft.issue=4&rft.spage=563&rft.epage=576&rft.pages=563-576&rft.issn=1089-778X&rft.eissn=1941-0026&rft.coden=ITEVF5&rft_id=info:doi/10.1109/TEVC.2015.2501315&rft_dat=%3Cproquest_RIE%3E1835578764%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808185725&rft_id=info:pmid/&rft_ieee_id=7329972&rfr_iscdi=true