A Primary Theoretical Study on Decomposition-Based Multiobjective Evolutionary Algorithms
Decomposition-based multiobjective evolutionary algorithms (MOEAs) have been studied a lot and have been widely and successfully used in practice. However, there are no related theoretical studies on this kind of MOEAs. In this paper, we theoretically analyze the MOEAs based on decomposition. First,...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on evolutionary computation 2016-08, Vol.20 (4), p.563-576 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 576 |
---|---|
container_issue | 4 |
container_start_page | 563 |
container_title | IEEE transactions on evolutionary computation |
container_volume | 20 |
creator | Li, Yuan-Long Zhou, Yu-Ren Zhan, Zhi-Hui Zhang, Jun |
description | Decomposition-based multiobjective evolutionary algorithms (MOEAs) have been studied a lot and have been widely and successfully used in practice. However, there are no related theoretical studies on this kind of MOEAs. In this paper, we theoretically analyze the MOEAs based on decomposition. First, we analyze the runtime complexity with two basic simple instances. In both cases the Pareto front have oneto-one map to the decomposed subproblems or not. Second, we analyze the runtime complexity on two difficult instances with bad neighborhood relations in fitness space or decision space. Our studies show that: 1) in certain cases, polynomialsized evenly distributed weight parameters-based decomposition cannot map each point in a polynomial sized Pareto front to a subproblem; 2) an ideal serialized algorithm can be very efficient on some simple instances; 3) the standard MOEA based on decomposition can benefit a runtime cut of a constant fraction from its neighborhood coevolution scheme; and 4) the standard MOEA based on decomposition performs well on difficult instances because both the Pareto domination-based and the scalar subproblem-based search schemes are combined in a proper way. |
doi_str_mv | 10.1109/TEVC.2015.2501315 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TEVC_2015_2501315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7329972</ieee_id><sourcerecordid>1835578764</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-5927dbb8af236c859971196d04a30ed8f5637e875bf0ade010d0c03a24e865bd3</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQQIMoWKs_QLwEvHhJndnNZnePtdYPUBSsoqewSSY2JenWbFLovzchxYOnmWHeDDPP884RJoigrxfzj9mEAYoJE4AcxYE3Qh1iAMCiwy4HpQMp1eexd-LcCgBDgXrkfU3917qoTL3zF0uyNTVFakr_rWmznW_X_i2lttpYVzSFXQc3xlHmP7dlVyUrSptiS_58a8u2b_dLpuW3rYtmWblT7yg3paOzfRx773fzxewheHq5f5xNn4KU66gJhGYySxJlcsajVAmtJaKOMggNB8pULiIuSUmR5GAyAoQMUuCGhaQikWR87F0Neze1_WnJNXFVuJTK0qzJti5GxYWQSkZhh17-Q1e2rdfddR0FCpWQTHQUDlRaW-dqyuPNYChGiHvZcS877mXHe9ndzMUwUxDRHy85695h_BdS6ns6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808185725</pqid></control><display><type>article</type><title>A Primary Theoretical Study on Decomposition-Based Multiobjective Evolutionary Algorithms</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Yuan-Long ; Zhou, Yu-Ren ; Zhan, Zhi-Hui ; Zhang, Jun</creator><creatorcontrib>Li, Yuan-Long ; Zhou, Yu-Ren ; Zhan, Zhi-Hui ; Zhang, Jun</creatorcontrib><description>Decomposition-based multiobjective evolutionary algorithms (MOEAs) have been studied a lot and have been widely and successfully used in practice. However, there are no related theoretical studies on this kind of MOEAs. In this paper, we theoretically analyze the MOEAs based on decomposition. First, we analyze the runtime complexity with two basic simple instances. In both cases the Pareto front have oneto-one map to the decomposed subproblems or not. Second, we analyze the runtime complexity on two difficult instances with bad neighborhood relations in fitness space or decision space. Our studies show that: 1) in certain cases, polynomialsized evenly distributed weight parameters-based decomposition cannot map each point in a polynomial sized Pareto front to a subproblem; 2) an ideal serialized algorithm can be very efficient on some simple instances; 3) the standard MOEA based on decomposition can benefit a runtime cut of a constant fraction from its neighborhood coevolution scheme; and 4) the standard MOEA based on decomposition performs well on difficult instances because both the Pareto domination-based and the scalar subproblem-based search schemes are combined in a proper way.</description><identifier>ISSN: 1089-778X</identifier><identifier>EISSN: 1941-0026</identifier><identifier>DOI: 10.1109/TEVC.2015.2501315</identifier><identifier>CODEN: ITEVF5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithm design and analysis ; Complexity ; Complexity theory ; Constants ; Decomposition ; Decomposition-based multiobjective evolutionary algorithms (MOEAs) ; Evolutionary algorithms ; Evolutionary computation ; Optimization ; Pareto optimality ; Polynomials ; Run time (computers) ; Runtime ; runtime analysis ; Sociology ; Statistics ; theoretical study</subject><ispartof>IEEE transactions on evolutionary computation, 2016-08, Vol.20 (4), p.563-576</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-5927dbb8af236c859971196d04a30ed8f5637e875bf0ade010d0c03a24e865bd3</citedby><cites>FETCH-LOGICAL-c396t-5927dbb8af236c859971196d04a30ed8f5637e875bf0ade010d0c03a24e865bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7329972$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7329972$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Yuan-Long</creatorcontrib><creatorcontrib>Zhou, Yu-Ren</creatorcontrib><creatorcontrib>Zhan, Zhi-Hui</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><title>A Primary Theoretical Study on Decomposition-Based Multiobjective Evolutionary Algorithms</title><title>IEEE transactions on evolutionary computation</title><addtitle>TEVC</addtitle><description>Decomposition-based multiobjective evolutionary algorithms (MOEAs) have been studied a lot and have been widely and successfully used in practice. However, there are no related theoretical studies on this kind of MOEAs. In this paper, we theoretically analyze the MOEAs based on decomposition. First, we analyze the runtime complexity with two basic simple instances. In both cases the Pareto front have oneto-one map to the decomposed subproblems or not. Second, we analyze the runtime complexity on two difficult instances with bad neighborhood relations in fitness space or decision space. Our studies show that: 1) in certain cases, polynomialsized evenly distributed weight parameters-based decomposition cannot map each point in a polynomial sized Pareto front to a subproblem; 2) an ideal serialized algorithm can be very efficient on some simple instances; 3) the standard MOEA based on decomposition can benefit a runtime cut of a constant fraction from its neighborhood coevolution scheme; and 4) the standard MOEA based on decomposition performs well on difficult instances because both the Pareto domination-based and the scalar subproblem-based search schemes are combined in a proper way.</description><subject>Algorithm design and analysis</subject><subject>Complexity</subject><subject>Complexity theory</subject><subject>Constants</subject><subject>Decomposition</subject><subject>Decomposition-based multiobjective evolutionary algorithms (MOEAs)</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>Optimization</subject><subject>Pareto optimality</subject><subject>Polynomials</subject><subject>Run time (computers)</subject><subject>Runtime</subject><subject>runtime analysis</subject><subject>Sociology</subject><subject>Statistics</subject><subject>theoretical study</subject><issn>1089-778X</issn><issn>1941-0026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQQIMoWKs_QLwEvHhJndnNZnePtdYPUBSsoqewSSY2JenWbFLovzchxYOnmWHeDDPP884RJoigrxfzj9mEAYoJE4AcxYE3Qh1iAMCiwy4HpQMp1eexd-LcCgBDgXrkfU3917qoTL3zF0uyNTVFakr_rWmznW_X_i2lttpYVzSFXQc3xlHmP7dlVyUrSptiS_58a8u2b_dLpuW3rYtmWblT7yg3paOzfRx773fzxewheHq5f5xNn4KU66gJhGYySxJlcsajVAmtJaKOMggNB8pULiIuSUmR5GAyAoQMUuCGhaQikWR87F0Neze1_WnJNXFVuJTK0qzJti5GxYWQSkZhh17-Q1e2rdfddR0FCpWQTHQUDlRaW-dqyuPNYChGiHvZcS877mXHe9ndzMUwUxDRHy85695h_BdS6ns6</recordid><startdate>201608</startdate><enddate>201608</enddate><creator>Li, Yuan-Long</creator><creator>Zhou, Yu-Ren</creator><creator>Zhan, Zhi-Hui</creator><creator>Zhang, Jun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201608</creationdate><title>A Primary Theoretical Study on Decomposition-Based Multiobjective Evolutionary Algorithms</title><author>Li, Yuan-Long ; Zhou, Yu-Ren ; Zhan, Zhi-Hui ; Zhang, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-5927dbb8af236c859971196d04a30ed8f5637e875bf0ade010d0c03a24e865bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithm design and analysis</topic><topic>Complexity</topic><topic>Complexity theory</topic><topic>Constants</topic><topic>Decomposition</topic><topic>Decomposition-based multiobjective evolutionary algorithms (MOEAs)</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>Optimization</topic><topic>Pareto optimality</topic><topic>Polynomials</topic><topic>Run time (computers)</topic><topic>Runtime</topic><topic>runtime analysis</topic><topic>Sociology</topic><topic>Statistics</topic><topic>theoretical study</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yuan-Long</creatorcontrib><creatorcontrib>Zhou, Yu-Ren</creatorcontrib><creatorcontrib>Zhan, Zhi-Hui</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on evolutionary computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Yuan-Long</au><au>Zhou, Yu-Ren</au><au>Zhan, Zhi-Hui</au><au>Zhang, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Primary Theoretical Study on Decomposition-Based Multiobjective Evolutionary Algorithms</atitle><jtitle>IEEE transactions on evolutionary computation</jtitle><stitle>TEVC</stitle><date>2016-08</date><risdate>2016</risdate><volume>20</volume><issue>4</issue><spage>563</spage><epage>576</epage><pages>563-576</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><coden>ITEVF5</coden><abstract>Decomposition-based multiobjective evolutionary algorithms (MOEAs) have been studied a lot and have been widely and successfully used in practice. However, there are no related theoretical studies on this kind of MOEAs. In this paper, we theoretically analyze the MOEAs based on decomposition. First, we analyze the runtime complexity with two basic simple instances. In both cases the Pareto front have oneto-one map to the decomposed subproblems or not. Second, we analyze the runtime complexity on two difficult instances with bad neighborhood relations in fitness space or decision space. Our studies show that: 1) in certain cases, polynomialsized evenly distributed weight parameters-based decomposition cannot map each point in a polynomial sized Pareto front to a subproblem; 2) an ideal serialized algorithm can be very efficient on some simple instances; 3) the standard MOEA based on decomposition can benefit a runtime cut of a constant fraction from its neighborhood coevolution scheme; and 4) the standard MOEA based on decomposition performs well on difficult instances because both the Pareto domination-based and the scalar subproblem-based search schemes are combined in a proper way.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEVC.2015.2501315</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-778X |
ispartof | IEEE transactions on evolutionary computation, 2016-08, Vol.20 (4), p.563-576 |
issn | 1089-778X 1941-0026 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TEVC_2015_2501315 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithm design and analysis Complexity Complexity theory Constants Decomposition Decomposition-based multiobjective evolutionary algorithms (MOEAs) Evolutionary algorithms Evolutionary computation Optimization Pareto optimality Polynomials Run time (computers) Runtime runtime analysis Sociology Statistics theoretical study |
title | A Primary Theoretical Study on Decomposition-Based Multiobjective Evolutionary Algorithms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T04%3A48%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Primary%20Theoretical%20Study%20on%20Decomposition-Based%20Multiobjective%20Evolutionary%20Algorithms&rft.jtitle=IEEE%20transactions%20on%20evolutionary%20computation&rft.au=Li,%20Yuan-Long&rft.date=2016-08&rft.volume=20&rft.issue=4&rft.spage=563&rft.epage=576&rft.pages=563-576&rft.issn=1089-778X&rft.eissn=1941-0026&rft.coden=ITEVF5&rft_id=info:doi/10.1109/TEVC.2015.2501315&rft_dat=%3Cproquest_RIE%3E1835578764%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808185725&rft_id=info:pmid/&rft_ieee_id=7329972&rfr_iscdi=true |