Complex Network Clustering by Multiobjective Discrete Particle Swarm Optimization Based on Decomposition

The field of complex network clustering has been very active in the past several years. In this paper, a discrete framework of the particle swarm optimization algorithm is proposed. Based on the proposed discrete framework, a multiobjective discrete particle swarm optimization algorithm is proposed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on evolutionary computation 2014-02, Vol.18 (1), p.82-97
Hauptverfasser: Gong, Maoguo, Cai, Qing, Chen, Xiaowei, Ma, Lijia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 97
container_issue 1
container_start_page 82
container_title IEEE transactions on evolutionary computation
container_volume 18
creator Gong, Maoguo
Cai, Qing
Chen, Xiaowei
Ma, Lijia
description The field of complex network clustering has been very active in the past several years. In this paper, a discrete framework of the particle swarm optimization algorithm is proposed. Based on the proposed discrete framework, a multiobjective discrete particle swarm optimization algorithm is proposed to solve the network clustering problem. The decomposition mechanism is adopted. A problem-specific population initialization method based on label propagation and a turbulence operator are introduced. In the proposed method, two evaluation objectives termed as kernel k-means and ratio cut are to be minimized. However, the two objectives can only be used to handle unsigned networks. In order to deal with signed networks, they have been extended to the signed version. The clustering performances of the proposed algorithm have been validated on signed networks and unsigned networks. Extensive experimental studies compared with ten state-of-the-art approaches prove that the proposed algorithm is effective and promising.
doi_str_mv 10.1109/TEVC.2013.2260862
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TEVC_2013_2260862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6510542</ieee_id><sourcerecordid>1671585205</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-d0a9919ab03c62e993ef773072f574e6b7d3a1ea524c2a7f1e085bd7f7f7b91c3</originalsourceid><addsrcrecordid>eNpdkE9P3DAQxSNUJCjwARAXS730ku2ME9vxsQ30jwSlErTqzXK8k9bbZLPYTil8erxa1AOaw4xGv_f09IriFGGBCPrd7cWPdsEBqwXnEhrJ94pD1DWWAFy-yjc0ulSq-XlQvI5xBYC1QH1Y_G6ncTPQP_aV0v0U_rB2mGOi4Ne_WPfAruYh-albkUv-L7FzH12gROybDcm7gdjNvQ0ju94kP_pHm9k1-2AjLVk-zsll8yn67fu42O_tEOnkeR8V3z9e3Lafy8vrT1_a95elqzRP5RKs1qhtB5WTnLSuqFeqAsV7oWqSnVpWFskKXjtuVY8EjeiWqs_TaXTVUfF257sJ091MMZkxh6ZhsGua5mhQKhSN4CAy-uYFuprmsM7pDAqoJTaNVJnCHeXCFGOg3myCH214MAhm273Zdm-23Zvn7rPmbKfxRPSflwJB1Lx6AnyrgSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1504618867</pqid></control><display><type>article</type><title>Complex Network Clustering by Multiobjective Discrete Particle Swarm Optimization Based on Decomposition</title><source>IEEE Electronic Library Online</source><creator>Gong, Maoguo ; Cai, Qing ; Chen, Xiaowei ; Ma, Lijia</creator><creatorcontrib>Gong, Maoguo ; Cai, Qing ; Chen, Xiaowei ; Ma, Lijia</creatorcontrib><description>The field of complex network clustering has been very active in the past several years. In this paper, a discrete framework of the particle swarm optimization algorithm is proposed. Based on the proposed discrete framework, a multiobjective discrete particle swarm optimization algorithm is proposed to solve the network clustering problem. The decomposition mechanism is adopted. A problem-specific population initialization method based on label propagation and a turbulence operator are introduced. In the proposed method, two evaluation objectives termed as kernel k-means and ratio cut are to be minimized. However, the two objectives can only be used to handle unsigned networks. In order to deal with signed networks, they have been extended to the signed version. The clustering performances of the proposed algorithm have been validated on signed networks and unsigned networks. Extensive experimental studies compared with ten state-of-the-art approaches prove that the proposed algorithm is effective and promising.</description><identifier>ISSN: 1089-778X</identifier><identifier>EISSN: 1941-0026</identifier><identifier>DOI: 10.1109/TEVC.2013.2260862</identifier><identifier>CODEN: ITEVF5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Clustering ; Clustering algorithms ; Complex networks ; Computational fluid dynamics ; Decomposition ; evolutionary algorithm ; Fluid flow ; multiobjective optimization ; Networks ; Optimization ; Optimization algorithms ; Particle swarm optimization ; Sociology ; Statistics ; Swarm intelligence ; Turbulence</subject><ispartof>IEEE transactions on evolutionary computation, 2014-02, Vol.18 (1), p.82-97</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-d0a9919ab03c62e993ef773072f574e6b7d3a1ea524c2a7f1e085bd7f7f7b91c3</citedby><cites>FETCH-LOGICAL-c392t-d0a9919ab03c62e993ef773072f574e6b7d3a1ea524c2a7f1e085bd7f7f7b91c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6510542$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6510542$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gong, Maoguo</creatorcontrib><creatorcontrib>Cai, Qing</creatorcontrib><creatorcontrib>Chen, Xiaowei</creatorcontrib><creatorcontrib>Ma, Lijia</creatorcontrib><title>Complex Network Clustering by Multiobjective Discrete Particle Swarm Optimization Based on Decomposition</title><title>IEEE transactions on evolutionary computation</title><addtitle>TEVC</addtitle><description>The field of complex network clustering has been very active in the past several years. In this paper, a discrete framework of the particle swarm optimization algorithm is proposed. Based on the proposed discrete framework, a multiobjective discrete particle swarm optimization algorithm is proposed to solve the network clustering problem. The decomposition mechanism is adopted. A problem-specific population initialization method based on label propagation and a turbulence operator are introduced. In the proposed method, two evaluation objectives termed as kernel k-means and ratio cut are to be minimized. However, the two objectives can only be used to handle unsigned networks. In order to deal with signed networks, they have been extended to the signed version. The clustering performances of the proposed algorithm have been validated on signed networks and unsigned networks. Extensive experimental studies compared with ten state-of-the-art approaches prove that the proposed algorithm is effective and promising.</description><subject>Algorithms</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Complex networks</subject><subject>Computational fluid dynamics</subject><subject>Decomposition</subject><subject>evolutionary algorithm</subject><subject>Fluid flow</subject><subject>multiobjective optimization</subject><subject>Networks</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Particle swarm optimization</subject><subject>Sociology</subject><subject>Statistics</subject><subject>Swarm intelligence</subject><subject>Turbulence</subject><issn>1089-778X</issn><issn>1941-0026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE9P3DAQxSNUJCjwARAXS730ku2ME9vxsQ30jwSlErTqzXK8k9bbZLPYTil8erxa1AOaw4xGv_f09IriFGGBCPrd7cWPdsEBqwXnEhrJ94pD1DWWAFy-yjc0ulSq-XlQvI5xBYC1QH1Y_G6ncTPQP_aV0v0U_rB2mGOi4Ne_WPfAruYh-albkUv-L7FzH12gROybDcm7gdjNvQ0ju94kP_pHm9k1-2AjLVk-zsll8yn67fu42O_tEOnkeR8V3z9e3Lafy8vrT1_a95elqzRP5RKs1qhtB5WTnLSuqFeqAsV7oWqSnVpWFskKXjtuVY8EjeiWqs_TaXTVUfF257sJ091MMZkxh6ZhsGua5mhQKhSN4CAy-uYFuprmsM7pDAqoJTaNVJnCHeXCFGOg3myCH214MAhm273Zdm-23Zvn7rPmbKfxRPSflwJB1Lx6AnyrgSw</recordid><startdate>201402</startdate><enddate>201402</enddate><creator>Gong, Maoguo</creator><creator>Cai, Qing</creator><creator>Chen, Xiaowei</creator><creator>Ma, Lijia</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201402</creationdate><title>Complex Network Clustering by Multiobjective Discrete Particle Swarm Optimization Based on Decomposition</title><author>Gong, Maoguo ; Cai, Qing ; Chen, Xiaowei ; Ma, Lijia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-d0a9919ab03c62e993ef773072f574e6b7d3a1ea524c2a7f1e085bd7f7f7b91c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Complex networks</topic><topic>Computational fluid dynamics</topic><topic>Decomposition</topic><topic>evolutionary algorithm</topic><topic>Fluid flow</topic><topic>multiobjective optimization</topic><topic>Networks</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Particle swarm optimization</topic><topic>Sociology</topic><topic>Statistics</topic><topic>Swarm intelligence</topic><topic>Turbulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gong, Maoguo</creatorcontrib><creatorcontrib>Cai, Qing</creatorcontrib><creatorcontrib>Chen, Xiaowei</creatorcontrib><creatorcontrib>Ma, Lijia</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on evolutionary computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gong, Maoguo</au><au>Cai, Qing</au><au>Chen, Xiaowei</au><au>Ma, Lijia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complex Network Clustering by Multiobjective Discrete Particle Swarm Optimization Based on Decomposition</atitle><jtitle>IEEE transactions on evolutionary computation</jtitle><stitle>TEVC</stitle><date>2014-02</date><risdate>2014</risdate><volume>18</volume><issue>1</issue><spage>82</spage><epage>97</epage><pages>82-97</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><coden>ITEVF5</coden><abstract>The field of complex network clustering has been very active in the past several years. In this paper, a discrete framework of the particle swarm optimization algorithm is proposed. Based on the proposed discrete framework, a multiobjective discrete particle swarm optimization algorithm is proposed to solve the network clustering problem. The decomposition mechanism is adopted. A problem-specific population initialization method based on label propagation and a turbulence operator are introduced. In the proposed method, two evaluation objectives termed as kernel k-means and ratio cut are to be minimized. However, the two objectives can only be used to handle unsigned networks. In order to deal with signed networks, they have been extended to the signed version. The clustering performances of the proposed algorithm have been validated on signed networks and unsigned networks. Extensive experimental studies compared with ten state-of-the-art approaches prove that the proposed algorithm is effective and promising.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEVC.2013.2260862</doi><tpages>16</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-778X
ispartof IEEE transactions on evolutionary computation, 2014-02, Vol.18 (1), p.82-97
issn 1089-778X
1941-0026
language eng
recordid cdi_crossref_primary_10_1109_TEVC_2013_2260862
source IEEE Electronic Library Online
subjects Algorithms
Clustering
Clustering algorithms
Complex networks
Computational fluid dynamics
Decomposition
evolutionary algorithm
Fluid flow
multiobjective optimization
Networks
Optimization
Optimization algorithms
Particle swarm optimization
Sociology
Statistics
Swarm intelligence
Turbulence
title Complex Network Clustering by Multiobjective Discrete Particle Swarm Optimization Based on Decomposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T23%3A30%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complex%20Network%20Clustering%20by%20Multiobjective%20Discrete%20Particle%20Swarm%20Optimization%20Based%20on%20Decomposition&rft.jtitle=IEEE%20transactions%20on%20evolutionary%20computation&rft.au=Gong,%20Maoguo&rft.date=2014-02&rft.volume=18&rft.issue=1&rft.spage=82&rft.epage=97&rft.pages=82-97&rft.issn=1089-778X&rft.eissn=1941-0026&rft.coden=ITEVF5&rft_id=info:doi/10.1109/TEVC.2013.2260862&rft_dat=%3Cproquest_RIE%3E1671585205%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1504618867&rft_id=info:pmid/&rft_ieee_id=6510542&rfr_iscdi=true