A Dual-Population Genetic Algorithm for Adaptive Diversity Control

A variety of previous works exist on maintaining population diversity of genetic algorithms (GAs). Dual-population GA (DPGA) is a type of multipopulation GA (MPGA) that uses an additional population as a reservoir of diversity. The main population is similar to that of an ordinary GA and evolves to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on evolutionary computation 2010-12, Vol.14 (6), p.865-884
Hauptverfasser: PARK, Taejin, KWANG RYEL RYU
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 884
container_issue 6
container_start_page 865
container_title IEEE transactions on evolutionary computation
container_volume 14
creator PARK, Taejin
KWANG RYEL RYU
description A variety of previous works exist on maintaining population diversity of genetic algorithms (GAs). Dual-population GA (DPGA) is a type of multipopulation GA (MPGA) that uses an additional population as a reservoir of diversity. The main population is similar to that of an ordinary GA and evolves to find good solutions. The reserve population evolves to maintain and provide diversity to the main population. While most MPGAs use migration as a means of information exchange between different populations, DPGA uses crossbreeding because the two populations have entirely different fitness functions. The reserve population cannot provide useful diversity to the main population unless the two maintain an appropriate distance. Therefore, DPGA adjusts the distance dynamically to achieve an appropriate balance between exploration and exploitation. The experimental results on various classes of problems using binary, real-valued, and order-based representations show that DPGA quite often outperforms not only the standard GAs but also other GAs having additional mechanisms of diversity preservation.
doi_str_mv 10.1109/TEVC.2010.2043362
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TEVC_2010_2043362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5491154</ieee_id><sourcerecordid>1671246332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-f3895a368cdcf94df11b9cac652ddcb548a08e32938d99e6fdd8fb013346d3c13</originalsourceid><addsrcrecordid>eNpdkEtLxDAUhYsoqKM_QNwURHBTzc1N02Q5jk8QdKHirmTy0EinGZNW8N-bYQYXbu6D-53D5RTFEZBzACIvnq9fZ-eU5JUShsjpVrEHkkFFCOXbeSZCVk0j3naL_ZQ-CQFWg9wrLqfl1ai66iksx04NPvTlre3t4HU57d5D9MPHonQhllOjloP_tuVVLjH54aechX6IoTsodpzqkj3c9EnxcnP9PLurHh5v72fTh0pjzYfKoZC1Qi600U4y4wDmUivNa2qMntdMKCIsUonCSGm5M0a4OQFExg1qwElxtvZdxvA12jS0C5-07TrV2zCmFngDlHFEmtGTf-hnGGOfv2uBIIEGmWgyBWtKx5BStK5dRr9Q8SdD7SrVdpVqu0q13aSaNacbZ5W06lxUvfbpT0ixRpCSZO54zXlr7d-5ZhKgZvgLMZd_EQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1030173487</pqid></control><display><type>article</type><title>A Dual-Population Genetic Algorithm for Adaptive Diversity Control</title><source>IEEE Electronic Library (IEL)</source><creator>PARK, Taejin ; KWANG RYEL RYU</creator><creatorcontrib>PARK, Taejin ; KWANG RYEL RYU</creatorcontrib><description>A variety of previous works exist on maintaining population diversity of genetic algorithms (GAs). Dual-population GA (DPGA) is a type of multipopulation GA (MPGA) that uses an additional population as a reservoir of diversity. The main population is similar to that of an ordinary GA and evolves to find good solutions. The reserve population evolves to maintain and provide diversity to the main population. While most MPGAs use migration as a means of information exchange between different populations, DPGA uses crossbreeding because the two populations have entirely different fitness functions. The reserve population cannot provide useful diversity to the main population unless the two maintain an appropriate distance. Therefore, DPGA adjusts the distance dynamically to achieve an appropriate balance between exploration and exploitation. The experimental results on various classes of problems using binary, real-valued, and order-based representations show that DPGA quite often outperforms not only the standard GAs but also other GAs having additional mechanisms of diversity preservation.</description><identifier>ISSN: 1089-778X</identifier><identifier>EISSN: 1941-0026</identifier><identifier>DOI: 10.1109/TEVC.2010.2043362</identifier><identifier>CODEN: ITEVF5</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adaptive algorithms ; Adaptive control ; Adaptive control systems ; Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Computer science education ; Computer science; control theory; systems ; Convergence ; Diversity methods ; Diversity preservation ; dual-population genetic algorithm (DPGA) ; Educational programs ; Exact sciences and technology ; genetic algorithm ; Genetic algorithms ; Genetic mutations ; Mathematical analysis ; Mathematical models ; Migration ; multimodal function ; multipopulation genetic algorithm (MPGA) ; Programmable control ; Reserves ; Reservoirs ; Robustness ; Studies ; Theoretical computing</subject><ispartof>IEEE transactions on evolutionary computation, 2010-12, Vol.14 (6), p.865-884</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-f3895a368cdcf94df11b9cac652ddcb548a08e32938d99e6fdd8fb013346d3c13</citedby><cites>FETCH-LOGICAL-c356t-f3895a368cdcf94df11b9cac652ddcb548a08e32938d99e6fdd8fb013346d3c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5491154$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5491154$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23531990$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>PARK, Taejin</creatorcontrib><creatorcontrib>KWANG RYEL RYU</creatorcontrib><title>A Dual-Population Genetic Algorithm for Adaptive Diversity Control</title><title>IEEE transactions on evolutionary computation</title><addtitle>TEVC</addtitle><description>A variety of previous works exist on maintaining population diversity of genetic algorithms (GAs). Dual-population GA (DPGA) is a type of multipopulation GA (MPGA) that uses an additional population as a reservoir of diversity. The main population is similar to that of an ordinary GA and evolves to find good solutions. The reserve population evolves to maintain and provide diversity to the main population. While most MPGAs use migration as a means of information exchange between different populations, DPGA uses crossbreeding because the two populations have entirely different fitness functions. The reserve population cannot provide useful diversity to the main population unless the two maintain an appropriate distance. Therefore, DPGA adjusts the distance dynamically to achieve an appropriate balance between exploration and exploitation. The experimental results on various classes of problems using binary, real-valued, and order-based representations show that DPGA quite often outperforms not only the standard GAs but also other GAs having additional mechanisms of diversity preservation.</description><subject>Adaptive algorithms</subject><subject>Adaptive control</subject><subject>Adaptive control systems</subject><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Computer science education</subject><subject>Computer science; control theory; systems</subject><subject>Convergence</subject><subject>Diversity methods</subject><subject>Diversity preservation</subject><subject>dual-population genetic algorithm (DPGA)</subject><subject>Educational programs</subject><subject>Exact sciences and technology</subject><subject>genetic algorithm</subject><subject>Genetic algorithms</subject><subject>Genetic mutations</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Migration</subject><subject>multimodal function</subject><subject>multipopulation genetic algorithm (MPGA)</subject><subject>Programmable control</subject><subject>Reserves</subject><subject>Reservoirs</subject><subject>Robustness</subject><subject>Studies</subject><subject>Theoretical computing</subject><issn>1089-778X</issn><issn>1941-0026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtLxDAUhYsoqKM_QNwURHBTzc1N02Q5jk8QdKHirmTy0EinGZNW8N-bYQYXbu6D-53D5RTFEZBzACIvnq9fZ-eU5JUShsjpVrEHkkFFCOXbeSZCVk0j3naL_ZQ-CQFWg9wrLqfl1ai66iksx04NPvTlre3t4HU57d5D9MPHonQhllOjloP_tuVVLjH54aechX6IoTsodpzqkj3c9EnxcnP9PLurHh5v72fTh0pjzYfKoZC1Qi600U4y4wDmUivNa2qMntdMKCIsUonCSGm5M0a4OQFExg1qwElxtvZdxvA12jS0C5-07TrV2zCmFngDlHFEmtGTf-hnGGOfv2uBIIEGmWgyBWtKx5BStK5dRr9Q8SdD7SrVdpVqu0q13aSaNacbZ5W06lxUvfbpT0ixRpCSZO54zXlr7d-5ZhKgZvgLMZd_EQ</recordid><startdate>20101201</startdate><enddate>20101201</enddate><creator>PARK, Taejin</creator><creator>KWANG RYEL RYU</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20101201</creationdate><title>A Dual-Population Genetic Algorithm for Adaptive Diversity Control</title><author>PARK, Taejin ; KWANG RYEL RYU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-f3895a368cdcf94df11b9cac652ddcb548a08e32938d99e6fdd8fb013346d3c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adaptive algorithms</topic><topic>Adaptive control</topic><topic>Adaptive control systems</topic><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Computer science education</topic><topic>Computer science; control theory; systems</topic><topic>Convergence</topic><topic>Diversity methods</topic><topic>Diversity preservation</topic><topic>dual-population genetic algorithm (DPGA)</topic><topic>Educational programs</topic><topic>Exact sciences and technology</topic><topic>genetic algorithm</topic><topic>Genetic algorithms</topic><topic>Genetic mutations</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Migration</topic><topic>multimodal function</topic><topic>multipopulation genetic algorithm (MPGA)</topic><topic>Programmable control</topic><topic>Reserves</topic><topic>Reservoirs</topic><topic>Robustness</topic><topic>Studies</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>PARK, Taejin</creatorcontrib><creatorcontrib>KWANG RYEL RYU</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on evolutionary computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>PARK, Taejin</au><au>KWANG RYEL RYU</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Dual-Population Genetic Algorithm for Adaptive Diversity Control</atitle><jtitle>IEEE transactions on evolutionary computation</jtitle><stitle>TEVC</stitle><date>2010-12-01</date><risdate>2010</risdate><volume>14</volume><issue>6</issue><spage>865</spage><epage>884</epage><pages>865-884</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><coden>ITEVF5</coden><abstract>A variety of previous works exist on maintaining population diversity of genetic algorithms (GAs). Dual-population GA (DPGA) is a type of multipopulation GA (MPGA) that uses an additional population as a reservoir of diversity. The main population is similar to that of an ordinary GA and evolves to find good solutions. The reserve population evolves to maintain and provide diversity to the main population. While most MPGAs use migration as a means of information exchange between different populations, DPGA uses crossbreeding because the two populations have entirely different fitness functions. The reserve population cannot provide useful diversity to the main population unless the two maintain an appropriate distance. Therefore, DPGA adjusts the distance dynamically to achieve an appropriate balance between exploration and exploitation. The experimental results on various classes of problems using binary, real-valued, and order-based representations show that DPGA quite often outperforms not only the standard GAs but also other GAs having additional mechanisms of diversity preservation.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TEVC.2010.2043362</doi><tpages>20</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-778X
ispartof IEEE transactions on evolutionary computation, 2010-12, Vol.14 (6), p.865-884
issn 1089-778X
1941-0026
language eng
recordid cdi_crossref_primary_10_1109_TEVC_2010_2043362
source IEEE Electronic Library (IEL)
subjects Adaptive algorithms
Adaptive control
Adaptive control systems
Algorithmics. Computability. Computer arithmetics
Applied sciences
Computer science education
Computer science
control theory
systems
Convergence
Diversity methods
Diversity preservation
dual-population genetic algorithm (DPGA)
Educational programs
Exact sciences and technology
genetic algorithm
Genetic algorithms
Genetic mutations
Mathematical analysis
Mathematical models
Migration
multimodal function
multipopulation genetic algorithm (MPGA)
Programmable control
Reserves
Reservoirs
Robustness
Studies
Theoretical computing
title A Dual-Population Genetic Algorithm for Adaptive Diversity Control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T23%3A56%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Dual-Population%20Genetic%20Algorithm%20for%20Adaptive%20Diversity%20Control&rft.jtitle=IEEE%20transactions%20on%20evolutionary%20computation&rft.au=PARK,%20Taejin&rft.date=2010-12-01&rft.volume=14&rft.issue=6&rft.spage=865&rft.epage=884&rft.pages=865-884&rft.issn=1089-778X&rft.eissn=1941-0026&rft.coden=ITEVF5&rft_id=info:doi/10.1109/TEVC.2010.2043362&rft_dat=%3Cproquest_RIE%3E1671246332%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1030173487&rft_id=info:pmid/&rft_ieee_id=5491154&rfr_iscdi=true