Evaluating the Security and Economic Effects of Moving Target Defense Techniques on the Cloud
Moving Target Defense (MTD) is a proactive security mechanism that changes the attack surface with the aim of confusing attackers. Cloud computing leverages MTD techniques to enhance the cloud security posture against cyber threats. While many MTD techniques have been applied to cloud computing, the...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on emerging topics in computing 2022-10, Vol.10 (4), p.1772-1788 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1788 |
---|---|
container_issue | 4 |
container_start_page | 1772 |
container_title | IEEE transactions on emerging topics in computing |
container_volume | 10 |
creator | Alavizadeh, Hooman Aref, Samin Kim, Dong Seong Jang-Jaccard, Julian |
description | Moving Target Defense (MTD) is a proactive security mechanism that changes the attack surface with the aim of confusing attackers. Cloud computing leverages MTD techniques to enhance the cloud security posture against cyber threats. While many MTD techniques have been applied to cloud computing, there has so far been no joint evaluation of the effectiveness of MTD techniques with respect to security and economic metrics. In this paper, we first introduce mathematical definitions for the combination of three MTD techniques: Shuffle, Diversity, and Redundancy. Then, we utilize four security metrics - namely, system risk, attack cost, return on attack, and reliability - to assess the effectiveness of the combined MTD techniques applied to large-scale cloud models. Second, we focus on a specific context based on a cloud model for e-health applications to evaluate the effectiveness of the MTD techniques using security and economic metrics. We introduce (1) a strategy to effectively deploy the Shuffle MTD technique using a virtual machine placement technique, and (2) two strategies to deploy the Diversity MTD technique through operating system diversification. As deploying the Diversity technique incurs costs, we formulate the optimal diversity assignment problem (O-DAP), and solve it as a binary linear programming model to obtain the assignment that maximizes the expected net benefit. |
doi_str_mv | 10.1109/TETC.2022.3155272 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ESBDL</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TETC_2022_3155272</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9733785</ieee_id><sourcerecordid>2747610712</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-381e8c59e25bc673749e25ef004e24c879ef97f4ab10c4c618096d65c8f49ea83</originalsourceid><addsrcrecordid>eNpNkEtLw0AUhQdRsGh_gLgZcJ06j8xrKTU-oOLCuJRhOr3TprSZOkkK_fcmtoh3c-_iO-ceDkI3lEwoJea-LMrphBHGJpwKwRQ7QyNGpc6kEuT8332Jxk2zJv1oKo1UI_RV7N2mc21VL3G7AvwBvktVe8CuXuDCxzpuK4-LEMC3DY4Bv8X9wJYuLaHFjxCgbgCX4Fd19d1Bz9S_RtNN7BbX6CK4TQPj075Cn0991pds9v78On2YZZ5z2WZcU9BeGGBi7qXiKh9OCITkwHKvlYFgVMjdnBKfe0k1MXIhhdehJ53mV-ju6LtLcQjR2nXsUt2_tEzlSlKiKOspeqR8ik2TINhdqrYuHSwldijSDkXaoUh7KrLX3B41FQD88UZxrrTgP8F4bgA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2747610712</pqid></control><display><type>article</type><title>Evaluating the Security and Economic Effects of Moving Target Defense Techniques on the Cloud</title><source>IEEE Open Access Journals</source><creator>Alavizadeh, Hooman ; Aref, Samin ; Kim, Dong Seong ; Jang-Jaccard, Julian</creator><creatorcontrib>Alavizadeh, Hooman ; Aref, Samin ; Kim, Dong Seong ; Jang-Jaccard, Julian</creatorcontrib><description>Moving Target Defense (MTD) is a proactive security mechanism that changes the attack surface with the aim of confusing attackers. Cloud computing leverages MTD techniques to enhance the cloud security posture against cyber threats. While many MTD techniques have been applied to cloud computing, there has so far been no joint evaluation of the effectiveness of MTD techniques with respect to security and economic metrics. In this paper, we first introduce mathematical definitions for the combination of three MTD techniques: Shuffle, Diversity, and Redundancy. Then, we utilize four security metrics - namely, system risk, attack cost, return on attack, and reliability - to assess the effectiveness of the combined MTD techniques applied to large-scale cloud models. Second, we focus on a specific context based on a cloud model for e-health applications to evaluate the effectiveness of the MTD techniques using security and economic metrics. We introduce (1) a strategy to effectively deploy the Shuffle MTD technique using a virtual machine placement technique, and (2) two strategies to deploy the Diversity MTD technique through operating system diversification. As deploying the Diversity technique incurs costs, we formulate the optimal diversity assignment problem (O-DAP), and solve it as a binary linear programming model to obtain the assignment that maximizes the expected net benefit.</description><identifier>ISSN: 2168-6750</identifier><identifier>EISSN: 2168-6750</identifier><identifier>DOI: 10.1109/TETC.2022.3155272</identifier><identifier>CODEN: ITETBT</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Biological system modeling ; Cloud computing ; Costs ; Cybersecurity ; diversity ; Diversity reception ; Economic impact ; economic metrics ; Effectiveness ; Evaluation ; Linear programming ; Measurement ; Moving targets ; optimization ; Redundancy ; Reliability analysis ; Security ; security analysis ; shuffle ; Virtual environments</subject><ispartof>IEEE transactions on emerging topics in computing, 2022-10, Vol.10 (4), p.1772-1788</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-381e8c59e25bc673749e25ef004e24c879ef97f4ab10c4c618096d65c8f49ea83</citedby><cites>FETCH-LOGICAL-c336t-381e8c59e25bc673749e25ef004e24c879ef97f4ab10c4c618096d65c8f49ea83</cites><orcidid>0000-0002-0033-6706 ; 0000-0002-1002-057X ; 0000-0003-2605-187X ; 0000-0002-5870-9253</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9733785$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27633,27924,27925,54758,54933</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9733785$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Alavizadeh, Hooman</creatorcontrib><creatorcontrib>Aref, Samin</creatorcontrib><creatorcontrib>Kim, Dong Seong</creatorcontrib><creatorcontrib>Jang-Jaccard, Julian</creatorcontrib><title>Evaluating the Security and Economic Effects of Moving Target Defense Techniques on the Cloud</title><title>IEEE transactions on emerging topics in computing</title><addtitle>TETC</addtitle><description>Moving Target Defense (MTD) is a proactive security mechanism that changes the attack surface with the aim of confusing attackers. Cloud computing leverages MTD techniques to enhance the cloud security posture against cyber threats. While many MTD techniques have been applied to cloud computing, there has so far been no joint evaluation of the effectiveness of MTD techniques with respect to security and economic metrics. In this paper, we first introduce mathematical definitions for the combination of three MTD techniques: Shuffle, Diversity, and Redundancy. Then, we utilize four security metrics - namely, system risk, attack cost, return on attack, and reliability - to assess the effectiveness of the combined MTD techniques applied to large-scale cloud models. Second, we focus on a specific context based on a cloud model for e-health applications to evaluate the effectiveness of the MTD techniques using security and economic metrics. We introduce (1) a strategy to effectively deploy the Shuffle MTD technique using a virtual machine placement technique, and (2) two strategies to deploy the Diversity MTD technique through operating system diversification. As deploying the Diversity technique incurs costs, we formulate the optimal diversity assignment problem (O-DAP), and solve it as a binary linear programming model to obtain the assignment that maximizes the expected net benefit.</description><subject>Biological system modeling</subject><subject>Cloud computing</subject><subject>Costs</subject><subject>Cybersecurity</subject><subject>diversity</subject><subject>Diversity reception</subject><subject>Economic impact</subject><subject>economic metrics</subject><subject>Effectiveness</subject><subject>Evaluation</subject><subject>Linear programming</subject><subject>Measurement</subject><subject>Moving targets</subject><subject>optimization</subject><subject>Redundancy</subject><subject>Reliability analysis</subject><subject>Security</subject><subject>security analysis</subject><subject>shuffle</subject><subject>Virtual environments</subject><issn>2168-6750</issn><issn>2168-6750</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtLw0AUhQdRsGh_gLgZcJ06j8xrKTU-oOLCuJRhOr3TprSZOkkK_fcmtoh3c-_iO-ceDkI3lEwoJea-LMrphBHGJpwKwRQ7QyNGpc6kEuT8332Jxk2zJv1oKo1UI_RV7N2mc21VL3G7AvwBvktVe8CuXuDCxzpuK4-LEMC3DY4Bv8X9wJYuLaHFjxCgbgCX4Fd19d1Bz9S_RtNN7BbX6CK4TQPj075Cn0991pds9v78On2YZZ5z2WZcU9BeGGBi7qXiKh9OCITkwHKvlYFgVMjdnBKfe0k1MXIhhdehJ53mV-ju6LtLcQjR2nXsUt2_tEzlSlKiKOspeqR8ik2TINhdqrYuHSwldijSDkXaoUh7KrLX3B41FQD88UZxrrTgP8F4bgA</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Alavizadeh, Hooman</creator><creator>Aref, Samin</creator><creator>Kim, Dong Seong</creator><creator>Jang-Jaccard, Julian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0033-6706</orcidid><orcidid>https://orcid.org/0000-0002-1002-057X</orcidid><orcidid>https://orcid.org/0000-0003-2605-187X</orcidid><orcidid>https://orcid.org/0000-0002-5870-9253</orcidid></search><sort><creationdate>20221001</creationdate><title>Evaluating the Security and Economic Effects of Moving Target Defense Techniques on the Cloud</title><author>Alavizadeh, Hooman ; Aref, Samin ; Kim, Dong Seong ; Jang-Jaccard, Julian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-381e8c59e25bc673749e25ef004e24c879ef97f4ab10c4c618096d65c8f49ea83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biological system modeling</topic><topic>Cloud computing</topic><topic>Costs</topic><topic>Cybersecurity</topic><topic>diversity</topic><topic>Diversity reception</topic><topic>Economic impact</topic><topic>economic metrics</topic><topic>Effectiveness</topic><topic>Evaluation</topic><topic>Linear programming</topic><topic>Measurement</topic><topic>Moving targets</topic><topic>optimization</topic><topic>Redundancy</topic><topic>Reliability analysis</topic><topic>Security</topic><topic>security analysis</topic><topic>shuffle</topic><topic>Virtual environments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alavizadeh, Hooman</creatorcontrib><creatorcontrib>Aref, Samin</creatorcontrib><creatorcontrib>Kim, Dong Seong</creatorcontrib><creatorcontrib>Jang-Jaccard, Julian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on emerging topics in computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Alavizadeh, Hooman</au><au>Aref, Samin</au><au>Kim, Dong Seong</au><au>Jang-Jaccard, Julian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating the Security and Economic Effects of Moving Target Defense Techniques on the Cloud</atitle><jtitle>IEEE transactions on emerging topics in computing</jtitle><stitle>TETC</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>10</volume><issue>4</issue><spage>1772</spage><epage>1788</epage><pages>1772-1788</pages><issn>2168-6750</issn><eissn>2168-6750</eissn><coden>ITETBT</coden><abstract>Moving Target Defense (MTD) is a proactive security mechanism that changes the attack surface with the aim of confusing attackers. Cloud computing leverages MTD techniques to enhance the cloud security posture against cyber threats. While many MTD techniques have been applied to cloud computing, there has so far been no joint evaluation of the effectiveness of MTD techniques with respect to security and economic metrics. In this paper, we first introduce mathematical definitions for the combination of three MTD techniques: Shuffle, Diversity, and Redundancy. Then, we utilize four security metrics - namely, system risk, attack cost, return on attack, and reliability - to assess the effectiveness of the combined MTD techniques applied to large-scale cloud models. Second, we focus on a specific context based on a cloud model for e-health applications to evaluate the effectiveness of the MTD techniques using security and economic metrics. We introduce (1) a strategy to effectively deploy the Shuffle MTD technique using a virtual machine placement technique, and (2) two strategies to deploy the Diversity MTD technique through operating system diversification. As deploying the Diversity technique incurs costs, we formulate the optimal diversity assignment problem (O-DAP), and solve it as a binary linear programming model to obtain the assignment that maximizes the expected net benefit.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TETC.2022.3155272</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-0033-6706</orcidid><orcidid>https://orcid.org/0000-0002-1002-057X</orcidid><orcidid>https://orcid.org/0000-0003-2605-187X</orcidid><orcidid>https://orcid.org/0000-0002-5870-9253</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-6750 |
ispartof | IEEE transactions on emerging topics in computing, 2022-10, Vol.10 (4), p.1772-1788 |
issn | 2168-6750 2168-6750 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TETC_2022_3155272 |
source | IEEE Open Access Journals |
subjects | Biological system modeling Cloud computing Costs Cybersecurity diversity Diversity reception Economic impact economic metrics Effectiveness Evaluation Linear programming Measurement Moving targets optimization Redundancy Reliability analysis Security security analysis shuffle Virtual environments |
title | Evaluating the Security and Economic Effects of Moving Target Defense Techniques on the Cloud |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T19%3A31%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ESBDL&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20the%20Security%20and%20Economic%20Effects%20of%20Moving%20Target%20Defense%20Techniques%20on%20the%20Cloud&rft.jtitle=IEEE%20transactions%20on%20emerging%20topics%20in%20computing&rft.au=Alavizadeh,%20Hooman&rft.date=2022-10-01&rft.volume=10&rft.issue=4&rft.spage=1772&rft.epage=1788&rft.pages=1772-1788&rft.issn=2168-6750&rft.eissn=2168-6750&rft.coden=ITETBT&rft_id=info:doi/10.1109/TETC.2022.3155272&rft_dat=%3Cproquest_ESBDL%3E2747610712%3C/proquest_ESBDL%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2747610712&rft_id=info:pmid/&rft_ieee_id=9733785&rfr_iscdi=true |