Towards the AlexNet Moment for Homomorphic Encryption: HCNN, the First Homomorphic CNN on Encrypted Data With GPUs
Deep Learning as a Service (DLaaS) stands as a promising solution for cloud-based inference applications. In this setting, the cloud has a pre-learned model whereas the user has samples on which she wants to run the model. The biggest concern with DLaaS is the user privacy if the input samples are s...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on emerging topics in computing 2021-07, Vol.9 (3), p.1330-1343 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1343 |
---|---|
container_issue | 3 |
container_start_page | 1330 |
container_title | IEEE transactions on emerging topics in computing |
container_volume | 9 |
creator | Al Badawi, Ahmad Jin, Chao Lin, Jie Mun, Chan Fook Jie, Sim Jun Tan, Benjamin Hong Meng Nan, Xiao Aung, Khin Mi Mi Chandrasekhar, Vijay Ramaseshan |
description | Deep Learning as a Service (DLaaS) stands as a promising solution for cloud-based inference applications. In this setting, the cloud has a pre-learned model whereas the user has samples on which she wants to run the model. The biggest concern with DLaaS is the user privacy if the input samples are sensitive data. We provide here an efficient privacy-preserving system by employing high-end technologies such as Fully Homomorphic Encryption (FHE), Convolutional Neural Networks (CNNs) and Graphics Processing Units (GPUs). FHE, with its widely-known feature of computing on encrypted data, empowers a wide range of privacy-concerned applications. This comes at high cost as it requires enormous computing power. In this article, we show how to accelerate the performance of running CNNs on encrypted data with GPUs. We evaluated two CNNs to classify homomorphically the MNIST and CIFAR-10 datasets. Our solution achieved sufficient security level (> 80 >80 bit) and reasonable classification accuracy (99) and (77.55 percent) for MNIST and CIFAR-10, respectively. In terms of latency, we could classify an image in 5.16 seconds and 304.43 seconds for MNIST and CIFAR-10, respectively. Our system can also classify a batch of images (> > 8,000) without extra overhead. |
doi_str_mv | 10.1109/TETC.2020.3014636 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TETC_2020_3014636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9160866</ieee_id><sourcerecordid>2575131228</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-456af9f7ba51367867be83464036e43f99a1abdec8dc797c3fc407230b0116d93</originalsourceid><addsrcrecordid>eNpVkE1LAzEQhoMoWGp_gHgJeHVrPnaTjbdS-yHU6qHFY8hms3RLu1mTFO2_N7VVdOYwA_O8M8wLwDVGfYyRuF-MFsM-QQT1KcIpo-wMdAhmecJ4hs7_9Jeg5_0axcgxE4x3gFvYD-VKD8PKwMHGfM5NgM92a5oAK-vg1G5junZVazhqtNu3obbNA5wO5_O7b9G4dj784-II2uYHNyV8VEHBtzqs4OR16a_ARaU23vROtQuW4_jANJm9TJ6Gg1miiaAhSTOmKlHxQmWYMp4zXpicpixFlJmUVkIorIrS6LzUXHBNK50iTigqEMasFLQLbo97W2ffd8YHubY718STkmQ8LsWE5JHCR0o7670zlWxdvVVuLzGSB3flwV15cFee3I2am6OmNsb88gIzlDNGvwCBP3Rq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2575131228</pqid></control><display><type>article</type><title>Towards the AlexNet Moment for Homomorphic Encryption: HCNN, the First Homomorphic CNN on Encrypted Data With GPUs</title><source>IEEE Electronic Library (IEL)</source><creator>Al Badawi, Ahmad ; Jin, Chao ; Lin, Jie ; Mun, Chan Fook ; Jie, Sim Jun ; Tan, Benjamin Hong Meng ; Nan, Xiao ; Aung, Khin Mi Mi ; Chandrasekhar, Vijay Ramaseshan</creator><creatorcontrib>Al Badawi, Ahmad ; Jin, Chao ; Lin, Jie ; Mun, Chan Fook ; Jie, Sim Jun ; Tan, Benjamin Hong Meng ; Nan, Xiao ; Aung, Khin Mi Mi ; Chandrasekhar, Vijay Ramaseshan</creatorcontrib><description><![CDATA[Deep Learning as a Service (DLaaS) stands as a promising solution for cloud-based inference applications. In this setting, the cloud has a pre-learned model whereas the user has samples on which she wants to run the model. The biggest concern with DLaaS is the user privacy if the input samples are sensitive data. We provide here an efficient privacy-preserving system by employing high-end technologies such as Fully Homomorphic Encryption (FHE), Convolutional Neural Networks (CNNs) and Graphics Processing Units (GPUs). FHE, with its widely-known feature of computing on encrypted data, empowers a wide range of privacy-concerned applications. This comes at high cost as it requires enormous computing power. In this article, we show how to accelerate the performance of running CNNs on encrypted data with GPUs. We evaluated two CNNs to classify homomorphically the MNIST and CIFAR-10 datasets. Our solution achieved sufficient security level (<inline-formula><tex-math notation="LaTeX">> 80</tex-math> <mml:math><mml:mrow><mml:mo>></mml:mo><mml:mn>80</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href="qaisarahmadalbadawi-ieq1-3014636.gif"/> </inline-formula> bit) and reasonable classification accuracy (99) and (77.55 percent) for MNIST and CIFAR-10, respectively. In terms of latency, we could classify an image in 5.16 seconds and 304.43 seconds for MNIST and CIFAR-10, respectively. Our system can also classify a batch of images (<inline-formula><tex-math notation="LaTeX">></tex-math> <mml:math><mml:mo>></mml:mo></mml:math><inline-graphic xlink:href="qaisarahmadalbadawi-ieq2-3014636.gif"/> </inline-formula> 8,000) without extra overhead.]]></description><identifier>ISSN: 2168-6750</identifier><identifier>EISSN: 2168-6750</identifier><identifier>DOI: 10.1109/TETC.2020.3014636</identifier><identifier>CODEN: ITETBT</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Cloud computing ; Computational modeling ; Deep learning ; Encryption ; GPUs ; Graphics processing units ; homomorphic encryption ; Image classification ; implementation ; Machine learning ; Privacy ; privacy-preserving technologies ; Servers ; Training</subject><ispartof>IEEE transactions on emerging topics in computing, 2021-07, Vol.9 (3), p.1330-1343</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-456af9f7ba51367867be83464036e43f99a1abdec8dc797c3fc407230b0116d93</citedby><cites>FETCH-LOGICAL-c293t-456af9f7ba51367867be83464036e43f99a1abdec8dc797c3fc407230b0116d93</cites><orcidid>0000-0002-8971-0660 ; 0000-0002-5652-3455 ; 0000-0002-3593-8790 ; 0000-0001-7759-7368</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9160866$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27610,27901,27902,54733,54908</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9160866$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Al Badawi, Ahmad</creatorcontrib><creatorcontrib>Jin, Chao</creatorcontrib><creatorcontrib>Lin, Jie</creatorcontrib><creatorcontrib>Mun, Chan Fook</creatorcontrib><creatorcontrib>Jie, Sim Jun</creatorcontrib><creatorcontrib>Tan, Benjamin Hong Meng</creatorcontrib><creatorcontrib>Nan, Xiao</creatorcontrib><creatorcontrib>Aung, Khin Mi Mi</creatorcontrib><creatorcontrib>Chandrasekhar, Vijay Ramaseshan</creatorcontrib><title>Towards the AlexNet Moment for Homomorphic Encryption: HCNN, the First Homomorphic CNN on Encrypted Data With GPUs</title><title>IEEE transactions on emerging topics in computing</title><addtitle>TETC</addtitle><description><![CDATA[Deep Learning as a Service (DLaaS) stands as a promising solution for cloud-based inference applications. In this setting, the cloud has a pre-learned model whereas the user has samples on which she wants to run the model. The biggest concern with DLaaS is the user privacy if the input samples are sensitive data. We provide here an efficient privacy-preserving system by employing high-end technologies such as Fully Homomorphic Encryption (FHE), Convolutional Neural Networks (CNNs) and Graphics Processing Units (GPUs). FHE, with its widely-known feature of computing on encrypted data, empowers a wide range of privacy-concerned applications. This comes at high cost as it requires enormous computing power. In this article, we show how to accelerate the performance of running CNNs on encrypted data with GPUs. We evaluated two CNNs to classify homomorphically the MNIST and CIFAR-10 datasets. Our solution achieved sufficient security level (<inline-formula><tex-math notation="LaTeX">> 80</tex-math> <mml:math><mml:mrow><mml:mo>></mml:mo><mml:mn>80</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href="qaisarahmadalbadawi-ieq1-3014636.gif"/> </inline-formula> bit) and reasonable classification accuracy (99) and (77.55 percent) for MNIST and CIFAR-10, respectively. In terms of latency, we could classify an image in 5.16 seconds and 304.43 seconds for MNIST and CIFAR-10, respectively. Our system can also classify a batch of images (<inline-formula><tex-math notation="LaTeX">></tex-math> <mml:math><mml:mo>></mml:mo></mml:math><inline-graphic xlink:href="qaisarahmadalbadawi-ieq2-3014636.gif"/> </inline-formula> 8,000) without extra overhead.]]></description><subject>Artificial neural networks</subject><subject>Cloud computing</subject><subject>Computational modeling</subject><subject>Deep learning</subject><subject>Encryption</subject><subject>GPUs</subject><subject>Graphics processing units</subject><subject>homomorphic encryption</subject><subject>Image classification</subject><subject>implementation</subject><subject>Machine learning</subject><subject>Privacy</subject><subject>privacy-preserving technologies</subject><subject>Servers</subject><subject>Training</subject><issn>2168-6750</issn><issn>2168-6750</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpVkE1LAzEQhoMoWGp_gHgJeHVrPnaTjbdS-yHU6qHFY8hms3RLu1mTFO2_N7VVdOYwA_O8M8wLwDVGfYyRuF-MFsM-QQT1KcIpo-wMdAhmecJ4hs7_9Jeg5_0axcgxE4x3gFvYD-VKD8PKwMHGfM5NgM92a5oAK-vg1G5junZVazhqtNu3obbNA5wO5_O7b9G4dj784-II2uYHNyV8VEHBtzqs4OR16a_ARaU23vROtQuW4_jANJm9TJ6Gg1miiaAhSTOmKlHxQmWYMp4zXpicpixFlJmUVkIorIrS6LzUXHBNK50iTigqEMasFLQLbo97W2ffd8YHubY718STkmQ8LsWE5JHCR0o7670zlWxdvVVuLzGSB3flwV15cFee3I2am6OmNsb88gIzlDNGvwCBP3Rq</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Al Badawi, Ahmad</creator><creator>Jin, Chao</creator><creator>Lin, Jie</creator><creator>Mun, Chan Fook</creator><creator>Jie, Sim Jun</creator><creator>Tan, Benjamin Hong Meng</creator><creator>Nan, Xiao</creator><creator>Aung, Khin Mi Mi</creator><creator>Chandrasekhar, Vijay Ramaseshan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8971-0660</orcidid><orcidid>https://orcid.org/0000-0002-5652-3455</orcidid><orcidid>https://orcid.org/0000-0002-3593-8790</orcidid><orcidid>https://orcid.org/0000-0001-7759-7368</orcidid></search><sort><creationdate>20210701</creationdate><title>Towards the AlexNet Moment for Homomorphic Encryption: HCNN, the First Homomorphic CNN on Encrypted Data With GPUs</title><author>Al Badawi, Ahmad ; Jin, Chao ; Lin, Jie ; Mun, Chan Fook ; Jie, Sim Jun ; Tan, Benjamin Hong Meng ; Nan, Xiao ; Aung, Khin Mi Mi ; Chandrasekhar, Vijay Ramaseshan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-456af9f7ba51367867be83464036e43f99a1abdec8dc797c3fc407230b0116d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Cloud computing</topic><topic>Computational modeling</topic><topic>Deep learning</topic><topic>Encryption</topic><topic>GPUs</topic><topic>Graphics processing units</topic><topic>homomorphic encryption</topic><topic>Image classification</topic><topic>implementation</topic><topic>Machine learning</topic><topic>Privacy</topic><topic>privacy-preserving technologies</topic><topic>Servers</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al Badawi, Ahmad</creatorcontrib><creatorcontrib>Jin, Chao</creatorcontrib><creatorcontrib>Lin, Jie</creatorcontrib><creatorcontrib>Mun, Chan Fook</creatorcontrib><creatorcontrib>Jie, Sim Jun</creatorcontrib><creatorcontrib>Tan, Benjamin Hong Meng</creatorcontrib><creatorcontrib>Nan, Xiao</creatorcontrib><creatorcontrib>Aung, Khin Mi Mi</creatorcontrib><creatorcontrib>Chandrasekhar, Vijay Ramaseshan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on emerging topics in computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Al Badawi, Ahmad</au><au>Jin, Chao</au><au>Lin, Jie</au><au>Mun, Chan Fook</au><au>Jie, Sim Jun</au><au>Tan, Benjamin Hong Meng</au><au>Nan, Xiao</au><au>Aung, Khin Mi Mi</au><au>Chandrasekhar, Vijay Ramaseshan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards the AlexNet Moment for Homomorphic Encryption: HCNN, the First Homomorphic CNN on Encrypted Data With GPUs</atitle><jtitle>IEEE transactions on emerging topics in computing</jtitle><stitle>TETC</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>9</volume><issue>3</issue><spage>1330</spage><epage>1343</epage><pages>1330-1343</pages><issn>2168-6750</issn><eissn>2168-6750</eissn><coden>ITETBT</coden><abstract><![CDATA[Deep Learning as a Service (DLaaS) stands as a promising solution for cloud-based inference applications. In this setting, the cloud has a pre-learned model whereas the user has samples on which she wants to run the model. The biggest concern with DLaaS is the user privacy if the input samples are sensitive data. We provide here an efficient privacy-preserving system by employing high-end technologies such as Fully Homomorphic Encryption (FHE), Convolutional Neural Networks (CNNs) and Graphics Processing Units (GPUs). FHE, with its widely-known feature of computing on encrypted data, empowers a wide range of privacy-concerned applications. This comes at high cost as it requires enormous computing power. In this article, we show how to accelerate the performance of running CNNs on encrypted data with GPUs. We evaluated two CNNs to classify homomorphically the MNIST and CIFAR-10 datasets. Our solution achieved sufficient security level (<inline-formula><tex-math notation="LaTeX">> 80</tex-math> <mml:math><mml:mrow><mml:mo>></mml:mo><mml:mn>80</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href="qaisarahmadalbadawi-ieq1-3014636.gif"/> </inline-formula> bit) and reasonable classification accuracy (99) and (77.55 percent) for MNIST and CIFAR-10, respectively. In terms of latency, we could classify an image in 5.16 seconds and 304.43 seconds for MNIST and CIFAR-10, respectively. Our system can also classify a batch of images (<inline-formula><tex-math notation="LaTeX">></tex-math> <mml:math><mml:mo>></mml:mo></mml:math><inline-graphic xlink:href="qaisarahmadalbadawi-ieq2-3014636.gif"/> </inline-formula> 8,000) without extra overhead.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TETC.2020.3014636</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8971-0660</orcidid><orcidid>https://orcid.org/0000-0002-5652-3455</orcidid><orcidid>https://orcid.org/0000-0002-3593-8790</orcidid><orcidid>https://orcid.org/0000-0001-7759-7368</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-6750 |
ispartof | IEEE transactions on emerging topics in computing, 2021-07, Vol.9 (3), p.1330-1343 |
issn | 2168-6750 2168-6750 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TETC_2020_3014636 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Cloud computing Computational modeling Deep learning Encryption GPUs Graphics processing units homomorphic encryption Image classification implementation Machine learning Privacy privacy-preserving technologies Servers Training |
title | Towards the AlexNet Moment for Homomorphic Encryption: HCNN, the First Homomorphic CNN on Encrypted Data With GPUs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T18%3A30%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20the%20AlexNet%20Moment%20for%20Homomorphic%20Encryption:%20HCNN,%20the%20First%20Homomorphic%20CNN%20on%20Encrypted%20Data%20With%20GPUs&rft.jtitle=IEEE%20transactions%20on%20emerging%20topics%20in%20computing&rft.au=Al%20Badawi,%20Ahmad&rft.date=2021-07-01&rft.volume=9&rft.issue=3&rft.spage=1330&rft.epage=1343&rft.pages=1330-1343&rft.issn=2168-6750&rft.eissn=2168-6750&rft.coden=ITETBT&rft_id=info:doi/10.1109/TETC.2020.3014636&rft_dat=%3Cproquest_RIE%3E2575131228%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2575131228&rft_id=info:pmid/&rft_ieee_id=9160866&rfr_iscdi=true |