Towards the AlexNet Moment for Homomorphic Encryption: HCNN, the First Homomorphic CNN on Encrypted Data With GPUs

Deep Learning as a Service (DLaaS) stands as a promising solution for cloud-based inference applications. In this setting, the cloud has a pre-learned model whereas the user has samples on which she wants to run the model. The biggest concern with DLaaS is the user privacy if the input samples are s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on emerging topics in computing 2021-07, Vol.9 (3), p.1330-1343
Hauptverfasser: Al Badawi, Ahmad, Jin, Chao, Lin, Jie, Mun, Chan Fook, Jie, Sim Jun, Tan, Benjamin Hong Meng, Nan, Xiao, Aung, Khin Mi Mi, Chandrasekhar, Vijay Ramaseshan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1343
container_issue 3
container_start_page 1330
container_title IEEE transactions on emerging topics in computing
container_volume 9
creator Al Badawi, Ahmad
Jin, Chao
Lin, Jie
Mun, Chan Fook
Jie, Sim Jun
Tan, Benjamin Hong Meng
Nan, Xiao
Aung, Khin Mi Mi
Chandrasekhar, Vijay Ramaseshan
description Deep Learning as a Service (DLaaS) stands as a promising solution for cloud-based inference applications. In this setting, the cloud has a pre-learned model whereas the user has samples on which she wants to run the model. The biggest concern with DLaaS is the user privacy if the input samples are sensitive data. We provide here an efficient privacy-preserving system by employing high-end technologies such as Fully Homomorphic Encryption (FHE), Convolutional Neural Networks (CNNs) and Graphics Processing Units (GPUs). FHE, with its widely-known feature of computing on encrypted data, empowers a wide range of privacy-concerned applications. This comes at high cost as it requires enormous computing power. In this article, we show how to accelerate the performance of running CNNs on encrypted data with GPUs. We evaluated two CNNs to classify homomorphically the MNIST and CIFAR-10 datasets. Our solution achieved sufficient security level (> 80 >80 bit) and reasonable classification accuracy (99) and (77.55 percent) for MNIST and CIFAR-10, respectively. In terms of latency, we could classify an image in 5.16 seconds and 304.43 seconds for MNIST and CIFAR-10, respectively. Our system can also classify a batch of images (> > 8,000) without extra overhead.
doi_str_mv 10.1109/TETC.2020.3014636
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TETC_2020_3014636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9160866</ieee_id><sourcerecordid>2575131228</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-456af9f7ba51367867be83464036e43f99a1abdec8dc797c3fc407230b0116d93</originalsourceid><addsrcrecordid>eNpVkE1LAzEQhoMoWGp_gHgJeHVrPnaTjbdS-yHU6qHFY8hms3RLu1mTFO2_N7VVdOYwA_O8M8wLwDVGfYyRuF-MFsM-QQT1KcIpo-wMdAhmecJ4hs7_9Jeg5_0axcgxE4x3gFvYD-VKD8PKwMHGfM5NgM92a5oAK-vg1G5junZVazhqtNu3obbNA5wO5_O7b9G4dj784-II2uYHNyV8VEHBtzqs4OR16a_ARaU23vROtQuW4_jANJm9TJ6Gg1miiaAhSTOmKlHxQmWYMp4zXpicpixFlJmUVkIorIrS6LzUXHBNK50iTigqEMasFLQLbo97W2ffd8YHubY718STkmQ8LsWE5JHCR0o7670zlWxdvVVuLzGSB3flwV15cFee3I2am6OmNsb88gIzlDNGvwCBP3Rq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2575131228</pqid></control><display><type>article</type><title>Towards the AlexNet Moment for Homomorphic Encryption: HCNN, the First Homomorphic CNN on Encrypted Data With GPUs</title><source>IEEE Electronic Library (IEL)</source><creator>Al Badawi, Ahmad ; Jin, Chao ; Lin, Jie ; Mun, Chan Fook ; Jie, Sim Jun ; Tan, Benjamin Hong Meng ; Nan, Xiao ; Aung, Khin Mi Mi ; Chandrasekhar, Vijay Ramaseshan</creator><creatorcontrib>Al Badawi, Ahmad ; Jin, Chao ; Lin, Jie ; Mun, Chan Fook ; Jie, Sim Jun ; Tan, Benjamin Hong Meng ; Nan, Xiao ; Aung, Khin Mi Mi ; Chandrasekhar, Vijay Ramaseshan</creatorcontrib><description><![CDATA[Deep Learning as a Service (DLaaS) stands as a promising solution for cloud-based inference applications. In this setting, the cloud has a pre-learned model whereas the user has samples on which she wants to run the model. The biggest concern with DLaaS is the user privacy if the input samples are sensitive data. We provide here an efficient privacy-preserving system by employing high-end technologies such as Fully Homomorphic Encryption (FHE), Convolutional Neural Networks (CNNs) and Graphics Processing Units (GPUs). FHE, with its widely-known feature of computing on encrypted data, empowers a wide range of privacy-concerned applications. This comes at high cost as it requires enormous computing power. In this article, we show how to accelerate the performance of running CNNs on encrypted data with GPUs. We evaluated two CNNs to classify homomorphically the MNIST and CIFAR-10 datasets. Our solution achieved sufficient security level (<inline-formula><tex-math notation="LaTeX">> 80</tex-math> <mml:math><mml:mrow><mml:mo>></mml:mo><mml:mn>80</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href="qaisarahmadalbadawi-ieq1-3014636.gif"/> </inline-formula> bit) and reasonable classification accuracy (99) and (77.55 percent) for MNIST and CIFAR-10, respectively. In terms of latency, we could classify an image in 5.16 seconds and 304.43 seconds for MNIST and CIFAR-10, respectively. Our system can also classify a batch of images (<inline-formula><tex-math notation="LaTeX">></tex-math> <mml:math><mml:mo>></mml:mo></mml:math><inline-graphic xlink:href="qaisarahmadalbadawi-ieq2-3014636.gif"/> </inline-formula> 8,000) without extra overhead.]]></description><identifier>ISSN: 2168-6750</identifier><identifier>EISSN: 2168-6750</identifier><identifier>DOI: 10.1109/TETC.2020.3014636</identifier><identifier>CODEN: ITETBT</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Cloud computing ; Computational modeling ; Deep learning ; Encryption ; GPUs ; Graphics processing units ; homomorphic encryption ; Image classification ; implementation ; Machine learning ; Privacy ; privacy-preserving technologies ; Servers ; Training</subject><ispartof>IEEE transactions on emerging topics in computing, 2021-07, Vol.9 (3), p.1330-1343</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-456af9f7ba51367867be83464036e43f99a1abdec8dc797c3fc407230b0116d93</citedby><cites>FETCH-LOGICAL-c293t-456af9f7ba51367867be83464036e43f99a1abdec8dc797c3fc407230b0116d93</cites><orcidid>0000-0002-8971-0660 ; 0000-0002-5652-3455 ; 0000-0002-3593-8790 ; 0000-0001-7759-7368</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9160866$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27610,27901,27902,54733,54908</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9160866$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Al Badawi, Ahmad</creatorcontrib><creatorcontrib>Jin, Chao</creatorcontrib><creatorcontrib>Lin, Jie</creatorcontrib><creatorcontrib>Mun, Chan Fook</creatorcontrib><creatorcontrib>Jie, Sim Jun</creatorcontrib><creatorcontrib>Tan, Benjamin Hong Meng</creatorcontrib><creatorcontrib>Nan, Xiao</creatorcontrib><creatorcontrib>Aung, Khin Mi Mi</creatorcontrib><creatorcontrib>Chandrasekhar, Vijay Ramaseshan</creatorcontrib><title>Towards the AlexNet Moment for Homomorphic Encryption: HCNN, the First Homomorphic CNN on Encrypted Data With GPUs</title><title>IEEE transactions on emerging topics in computing</title><addtitle>TETC</addtitle><description><![CDATA[Deep Learning as a Service (DLaaS) stands as a promising solution for cloud-based inference applications. In this setting, the cloud has a pre-learned model whereas the user has samples on which she wants to run the model. The biggest concern with DLaaS is the user privacy if the input samples are sensitive data. We provide here an efficient privacy-preserving system by employing high-end technologies such as Fully Homomorphic Encryption (FHE), Convolutional Neural Networks (CNNs) and Graphics Processing Units (GPUs). FHE, with its widely-known feature of computing on encrypted data, empowers a wide range of privacy-concerned applications. This comes at high cost as it requires enormous computing power. In this article, we show how to accelerate the performance of running CNNs on encrypted data with GPUs. We evaluated two CNNs to classify homomorphically the MNIST and CIFAR-10 datasets. Our solution achieved sufficient security level (<inline-formula><tex-math notation="LaTeX">> 80</tex-math> <mml:math><mml:mrow><mml:mo>></mml:mo><mml:mn>80</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href="qaisarahmadalbadawi-ieq1-3014636.gif"/> </inline-formula> bit) and reasonable classification accuracy (99) and (77.55 percent) for MNIST and CIFAR-10, respectively. In terms of latency, we could classify an image in 5.16 seconds and 304.43 seconds for MNIST and CIFAR-10, respectively. Our system can also classify a batch of images (<inline-formula><tex-math notation="LaTeX">></tex-math> <mml:math><mml:mo>></mml:mo></mml:math><inline-graphic xlink:href="qaisarahmadalbadawi-ieq2-3014636.gif"/> </inline-formula> 8,000) without extra overhead.]]></description><subject>Artificial neural networks</subject><subject>Cloud computing</subject><subject>Computational modeling</subject><subject>Deep learning</subject><subject>Encryption</subject><subject>GPUs</subject><subject>Graphics processing units</subject><subject>homomorphic encryption</subject><subject>Image classification</subject><subject>implementation</subject><subject>Machine learning</subject><subject>Privacy</subject><subject>privacy-preserving technologies</subject><subject>Servers</subject><subject>Training</subject><issn>2168-6750</issn><issn>2168-6750</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpVkE1LAzEQhoMoWGp_gHgJeHVrPnaTjbdS-yHU6qHFY8hms3RLu1mTFO2_N7VVdOYwA_O8M8wLwDVGfYyRuF-MFsM-QQT1KcIpo-wMdAhmecJ4hs7_9Jeg5_0axcgxE4x3gFvYD-VKD8PKwMHGfM5NgM92a5oAK-vg1G5junZVazhqtNu3obbNA5wO5_O7b9G4dj784-II2uYHNyV8VEHBtzqs4OR16a_ARaU23vROtQuW4_jANJm9TJ6Gg1miiaAhSTOmKlHxQmWYMp4zXpicpixFlJmUVkIorIrS6LzUXHBNK50iTigqEMasFLQLbo97W2ffd8YHubY718STkmQ8LsWE5JHCR0o7670zlWxdvVVuLzGSB3flwV15cFee3I2am6OmNsb88gIzlDNGvwCBP3Rq</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Al Badawi, Ahmad</creator><creator>Jin, Chao</creator><creator>Lin, Jie</creator><creator>Mun, Chan Fook</creator><creator>Jie, Sim Jun</creator><creator>Tan, Benjamin Hong Meng</creator><creator>Nan, Xiao</creator><creator>Aung, Khin Mi Mi</creator><creator>Chandrasekhar, Vijay Ramaseshan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8971-0660</orcidid><orcidid>https://orcid.org/0000-0002-5652-3455</orcidid><orcidid>https://orcid.org/0000-0002-3593-8790</orcidid><orcidid>https://orcid.org/0000-0001-7759-7368</orcidid></search><sort><creationdate>20210701</creationdate><title>Towards the AlexNet Moment for Homomorphic Encryption: HCNN, the First Homomorphic CNN on Encrypted Data With GPUs</title><author>Al Badawi, Ahmad ; Jin, Chao ; Lin, Jie ; Mun, Chan Fook ; Jie, Sim Jun ; Tan, Benjamin Hong Meng ; Nan, Xiao ; Aung, Khin Mi Mi ; Chandrasekhar, Vijay Ramaseshan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-456af9f7ba51367867be83464036e43f99a1abdec8dc797c3fc407230b0116d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Cloud computing</topic><topic>Computational modeling</topic><topic>Deep learning</topic><topic>Encryption</topic><topic>GPUs</topic><topic>Graphics processing units</topic><topic>homomorphic encryption</topic><topic>Image classification</topic><topic>implementation</topic><topic>Machine learning</topic><topic>Privacy</topic><topic>privacy-preserving technologies</topic><topic>Servers</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al Badawi, Ahmad</creatorcontrib><creatorcontrib>Jin, Chao</creatorcontrib><creatorcontrib>Lin, Jie</creatorcontrib><creatorcontrib>Mun, Chan Fook</creatorcontrib><creatorcontrib>Jie, Sim Jun</creatorcontrib><creatorcontrib>Tan, Benjamin Hong Meng</creatorcontrib><creatorcontrib>Nan, Xiao</creatorcontrib><creatorcontrib>Aung, Khin Mi Mi</creatorcontrib><creatorcontrib>Chandrasekhar, Vijay Ramaseshan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on emerging topics in computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Al Badawi, Ahmad</au><au>Jin, Chao</au><au>Lin, Jie</au><au>Mun, Chan Fook</au><au>Jie, Sim Jun</au><au>Tan, Benjamin Hong Meng</au><au>Nan, Xiao</au><au>Aung, Khin Mi Mi</au><au>Chandrasekhar, Vijay Ramaseshan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards the AlexNet Moment for Homomorphic Encryption: HCNN, the First Homomorphic CNN on Encrypted Data With GPUs</atitle><jtitle>IEEE transactions on emerging topics in computing</jtitle><stitle>TETC</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>9</volume><issue>3</issue><spage>1330</spage><epage>1343</epage><pages>1330-1343</pages><issn>2168-6750</issn><eissn>2168-6750</eissn><coden>ITETBT</coden><abstract><![CDATA[Deep Learning as a Service (DLaaS) stands as a promising solution for cloud-based inference applications. In this setting, the cloud has a pre-learned model whereas the user has samples on which she wants to run the model. The biggest concern with DLaaS is the user privacy if the input samples are sensitive data. We provide here an efficient privacy-preserving system by employing high-end technologies such as Fully Homomorphic Encryption (FHE), Convolutional Neural Networks (CNNs) and Graphics Processing Units (GPUs). FHE, with its widely-known feature of computing on encrypted data, empowers a wide range of privacy-concerned applications. This comes at high cost as it requires enormous computing power. In this article, we show how to accelerate the performance of running CNNs on encrypted data with GPUs. We evaluated two CNNs to classify homomorphically the MNIST and CIFAR-10 datasets. Our solution achieved sufficient security level (<inline-formula><tex-math notation="LaTeX">> 80</tex-math> <mml:math><mml:mrow><mml:mo>></mml:mo><mml:mn>80</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href="qaisarahmadalbadawi-ieq1-3014636.gif"/> </inline-formula> bit) and reasonable classification accuracy (99) and (77.55 percent) for MNIST and CIFAR-10, respectively. In terms of latency, we could classify an image in 5.16 seconds and 304.43 seconds for MNIST and CIFAR-10, respectively. Our system can also classify a batch of images (<inline-formula><tex-math notation="LaTeX">></tex-math> <mml:math><mml:mo>></mml:mo></mml:math><inline-graphic xlink:href="qaisarahmadalbadawi-ieq2-3014636.gif"/> </inline-formula> 8,000) without extra overhead.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TETC.2020.3014636</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8971-0660</orcidid><orcidid>https://orcid.org/0000-0002-5652-3455</orcidid><orcidid>https://orcid.org/0000-0002-3593-8790</orcidid><orcidid>https://orcid.org/0000-0001-7759-7368</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-6750
ispartof IEEE transactions on emerging topics in computing, 2021-07, Vol.9 (3), p.1330-1343
issn 2168-6750
2168-6750
language eng
recordid cdi_crossref_primary_10_1109_TETC_2020_3014636
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Cloud computing
Computational modeling
Deep learning
Encryption
GPUs
Graphics processing units
homomorphic encryption
Image classification
implementation
Machine learning
Privacy
privacy-preserving technologies
Servers
Training
title Towards the AlexNet Moment for Homomorphic Encryption: HCNN, the First Homomorphic CNN on Encrypted Data With GPUs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T18%3A30%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20the%20AlexNet%20Moment%20for%20Homomorphic%20Encryption:%20HCNN,%20the%20First%20Homomorphic%20CNN%20on%20Encrypted%20Data%20With%20GPUs&rft.jtitle=IEEE%20transactions%20on%20emerging%20topics%20in%20computing&rft.au=Al%20Badawi,%20Ahmad&rft.date=2021-07-01&rft.volume=9&rft.issue=3&rft.spage=1330&rft.epage=1343&rft.pages=1330-1343&rft.issn=2168-6750&rft.eissn=2168-6750&rft.coden=ITETBT&rft_id=info:doi/10.1109/TETC.2020.3014636&rft_dat=%3Cproquest_RIE%3E2575131228%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2575131228&rft_id=info:pmid/&rft_ieee_id=9160866&rfr_iscdi=true