Protecting Location Privacy for Task Allocation in Ad Hoc Mobile Cloud Computing

Mobile cloud computing (MCC) is an emerging cloud-computing paradigm that integrates cloud computing and mobile computing to enable many useful mobile applications. However, the large-scale deployment of MCC is hindered by the concerns on possible privacy leakage. In this paper, we investigate the p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on emerging topics in computing 2018-01, Vol.6 (1), p.110-121
Hauptverfasser: Gong, Yanmin, Zhang, Chi, Fang, Yuguang, Sun, Jinyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 121
container_issue 1
container_start_page 110
container_title IEEE transactions on emerging topics in computing
container_volume 6
creator Gong, Yanmin
Zhang, Chi
Fang, Yuguang
Sun, Jinyuan
description Mobile cloud computing (MCC) is an emerging cloud-computing paradigm that integrates cloud computing and mobile computing to enable many useful mobile applications. However, the large-scale deployment of MCC is hindered by the concerns on possible privacy leakage. In this paper, we investigate the privacy issues in the ad hoc MCC, and propose a framework that can protect the location privacy when allocating tasks to mobile devices. Our mechanism is based on differential privacy and geocast, and allows mobile devices to contribute their resources to the ad hoc mobile cloud without leaking their location information. We develop analytical models and task allocation strategies that balance privacy, utility, and system overhead in an ad hoc mobile cloud. We also conduct extensive experiments based on real-world data sets, and the results show that our framework can protect location privacy for mobile devices while providing effective services with low system overhead.
doi_str_mv 10.1109/TETC.2015.2490021
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TETC_2015_2490021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7296638</ieee_id><sourcerecordid>2299129386</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-52aca33191e003302fb8169642be905e7292370ec6c0f7978bcda79072de85113</originalsourceid><addsrcrecordid>eNpNkNFLwzAQxoMoOHR_gPgS8LnzLlmT5nEUdcLEPcznkKapdHbNTFph_72tm-K93MF9393Hj5AbhBkiqPvNwyafMcB0xuYKgOEZmTAUWSJkCuf_5ksyjXELQ2UolJATsl4H3znb1e07XXlrutq3dB3qL2MPtPKBbkz8oIum-d3VLV2UdOktffFF3TiaN74vae53-368ck0uKtNENz31K_L2OMRbJqvXp-d8sUrsHESXpMxYwzkqdACcA6uKn0hzVjgFqZNMMS7BWWGhkkpmhS2NVCBZ6bIUkV-Ru-PdffCfvYud3vo-tMNLzZhSyBTPxKDCo8oGH2Nwld6HemfCQSPokZ0e2emRnT6xGzy3R0_tnPvTD4GE4Bn_BqTRaEs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2299129386</pqid></control><display><type>article</type><title>Protecting Location Privacy for Task Allocation in Ad Hoc Mobile Cloud Computing</title><source>IEEE Electronic Library (IEL)</source><creator>Gong, Yanmin ; Zhang, Chi ; Fang, Yuguang ; Sun, Jinyuan</creator><creatorcontrib>Gong, Yanmin ; Zhang, Chi ; Fang, Yuguang ; Sun, Jinyuan</creatorcontrib><description>Mobile cloud computing (MCC) is an emerging cloud-computing paradigm that integrates cloud computing and mobile computing to enable many useful mobile applications. However, the large-scale deployment of MCC is hindered by the concerns on possible privacy leakage. In this paper, we investigate the privacy issues in the ad hoc MCC, and propose a framework that can protect the location privacy when allocating tasks to mobile devices. Our mechanism is based on differential privacy and geocast, and allows mobile devices to contribute their resources to the ad hoc mobile cloud without leaking their location information. We develop analytical models and task allocation strategies that balance privacy, utility, and system overhead in an ad hoc mobile cloud. We also conduct extensive experiments based on real-world data sets, and the results show that our framework can protect location privacy for mobile devices while providing effective services with low system overhead.</description><identifier>ISSN: 2168-6750</identifier><identifier>EISSN: 2168-6750</identifier><identifier>DOI: 10.1109/TETC.2015.2490021</identifier><identifier>CODEN: ITETBT</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Applications programs ; Cloud computing ; Electronic devices ; location privacy ; Mobile cloud computing ; Mobile communication ; Mobile computing ; Mobile handsets ; Noise measurement ; Privacy ; reputation ; Resource management ; Servers ; task allocation</subject><ispartof>IEEE transactions on emerging topics in computing, 2018-01, Vol.6 (1), p.110-121</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-52aca33191e003302fb8169642be905e7292370ec6c0f7978bcda79072de85113</citedby><cites>FETCH-LOGICAL-c406t-52aca33191e003302fb8169642be905e7292370ec6c0f7978bcda79072de85113</cites><orcidid>0000-0002-4543-6663</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7296638$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27610,27901,27902,54733,54908</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7296638$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gong, Yanmin</creatorcontrib><creatorcontrib>Zhang, Chi</creatorcontrib><creatorcontrib>Fang, Yuguang</creatorcontrib><creatorcontrib>Sun, Jinyuan</creatorcontrib><title>Protecting Location Privacy for Task Allocation in Ad Hoc Mobile Cloud Computing</title><title>IEEE transactions on emerging topics in computing</title><addtitle>TETC</addtitle><description>Mobile cloud computing (MCC) is an emerging cloud-computing paradigm that integrates cloud computing and mobile computing to enable many useful mobile applications. However, the large-scale deployment of MCC is hindered by the concerns on possible privacy leakage. In this paper, we investigate the privacy issues in the ad hoc MCC, and propose a framework that can protect the location privacy when allocating tasks to mobile devices. Our mechanism is based on differential privacy and geocast, and allows mobile devices to contribute their resources to the ad hoc mobile cloud without leaking their location information. We develop analytical models and task allocation strategies that balance privacy, utility, and system overhead in an ad hoc mobile cloud. We also conduct extensive experiments based on real-world data sets, and the results show that our framework can protect location privacy for mobile devices while providing effective services with low system overhead.</description><subject>Applications programs</subject><subject>Cloud computing</subject><subject>Electronic devices</subject><subject>location privacy</subject><subject>Mobile cloud computing</subject><subject>Mobile communication</subject><subject>Mobile computing</subject><subject>Mobile handsets</subject><subject>Noise measurement</subject><subject>Privacy</subject><subject>reputation</subject><subject>Resource management</subject><subject>Servers</subject><subject>task allocation</subject><issn>2168-6750</issn><issn>2168-6750</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkNFLwzAQxoMoOHR_gPgS8LnzLlmT5nEUdcLEPcznkKapdHbNTFph_72tm-K93MF9393Hj5AbhBkiqPvNwyafMcB0xuYKgOEZmTAUWSJkCuf_5ksyjXELQ2UolJATsl4H3znb1e07XXlrutq3dB3qL2MPtPKBbkz8oIum-d3VLV2UdOktffFF3TiaN74vae53-368ck0uKtNENz31K_L2OMRbJqvXp-d8sUrsHESXpMxYwzkqdACcA6uKn0hzVjgFqZNMMS7BWWGhkkpmhS2NVCBZ6bIUkV-Ru-PdffCfvYud3vo-tMNLzZhSyBTPxKDCo8oGH2Nwld6HemfCQSPokZ0e2emRnT6xGzy3R0_tnPvTD4GE4Bn_BqTRaEs</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Gong, Yanmin</creator><creator>Zhang, Chi</creator><creator>Fang, Yuguang</creator><creator>Sun, Jinyuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4543-6663</orcidid></search><sort><creationdate>20180101</creationdate><title>Protecting Location Privacy for Task Allocation in Ad Hoc Mobile Cloud Computing</title><author>Gong, Yanmin ; Zhang, Chi ; Fang, Yuguang ; Sun, Jinyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-52aca33191e003302fb8169642be905e7292370ec6c0f7978bcda79072de85113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applications programs</topic><topic>Cloud computing</topic><topic>Electronic devices</topic><topic>location privacy</topic><topic>Mobile cloud computing</topic><topic>Mobile communication</topic><topic>Mobile computing</topic><topic>Mobile handsets</topic><topic>Noise measurement</topic><topic>Privacy</topic><topic>reputation</topic><topic>Resource management</topic><topic>Servers</topic><topic>task allocation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gong, Yanmin</creatorcontrib><creatorcontrib>Zhang, Chi</creatorcontrib><creatorcontrib>Fang, Yuguang</creatorcontrib><creatorcontrib>Sun, Jinyuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on emerging topics in computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gong, Yanmin</au><au>Zhang, Chi</au><au>Fang, Yuguang</au><au>Sun, Jinyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protecting Location Privacy for Task Allocation in Ad Hoc Mobile Cloud Computing</atitle><jtitle>IEEE transactions on emerging topics in computing</jtitle><stitle>TETC</stitle><date>2018-01-01</date><risdate>2018</risdate><volume>6</volume><issue>1</issue><spage>110</spage><epage>121</epage><pages>110-121</pages><issn>2168-6750</issn><eissn>2168-6750</eissn><coden>ITETBT</coden><abstract>Mobile cloud computing (MCC) is an emerging cloud-computing paradigm that integrates cloud computing and mobile computing to enable many useful mobile applications. However, the large-scale deployment of MCC is hindered by the concerns on possible privacy leakage. In this paper, we investigate the privacy issues in the ad hoc MCC, and propose a framework that can protect the location privacy when allocating tasks to mobile devices. Our mechanism is based on differential privacy and geocast, and allows mobile devices to contribute their resources to the ad hoc mobile cloud without leaking their location information. We develop analytical models and task allocation strategies that balance privacy, utility, and system overhead in an ad hoc mobile cloud. We also conduct extensive experiments based on real-world data sets, and the results show that our framework can protect location privacy for mobile devices while providing effective services with low system overhead.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TETC.2015.2490021</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4543-6663</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-6750
ispartof IEEE transactions on emerging topics in computing, 2018-01, Vol.6 (1), p.110-121
issn 2168-6750
2168-6750
language eng
recordid cdi_crossref_primary_10_1109_TETC_2015_2490021
source IEEE Electronic Library (IEL)
subjects Applications programs
Cloud computing
Electronic devices
location privacy
Mobile cloud computing
Mobile communication
Mobile computing
Mobile handsets
Noise measurement
Privacy
reputation
Resource management
Servers
task allocation
title Protecting Location Privacy for Task Allocation in Ad Hoc Mobile Cloud Computing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T11%3A17%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protecting%20Location%20Privacy%20for%20Task%20Allocation%20in%20Ad%20Hoc%20Mobile%20Cloud%20Computing&rft.jtitle=IEEE%20transactions%20on%20emerging%20topics%20in%20computing&rft.au=Gong,%20Yanmin&rft.date=2018-01-01&rft.volume=6&rft.issue=1&rft.spage=110&rft.epage=121&rft.pages=110-121&rft.issn=2168-6750&rft.eissn=2168-6750&rft.coden=ITETBT&rft_id=info:doi/10.1109/TETC.2015.2490021&rft_dat=%3Cproquest_RIE%3E2299129386%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2299129386&rft_id=info:pmid/&rft_ieee_id=7296638&rfr_iscdi=true