Efficient Direct Aperture Optimization via Evolutionary Computation With Customized Variation Operators

As a popular technique for intensity-modulated radiotherapy, direct aperture optimization (DAO) aims at generating treatment plans for cancer cases without the relaxation of optimization models. Conventional DAO methods are mainly based on mathematical programming, which can quickly generate a singl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on emerging topics in computational intelligence 2024-04, Vol.8 (2), p.1388-1401
Hauptverfasser: Tian, Ye, Guang, Yaopei, Si, Langchun, Cao, Ruifen, Pei, Xi, Zhang, Xingyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1401
container_issue 2
container_start_page 1388
container_title IEEE transactions on emerging topics in computational intelligence
container_volume 8
creator Tian, Ye
Guang, Yaopei
Si, Langchun
Cao, Ruifen
Pei, Xi
Zhang, Xingyi
description As a popular technique for intensity-modulated radiotherapy, direct aperture optimization (DAO) aims at generating treatment plans for cancer cases without the relaxation of optimization models. Conventional DAO methods are mainly based on mathematical programming, which can quickly generate a single plan but is inefficient in offering multiple candidate plans for clinical doctors. Recently, metaheuristics have been employed by DAO to offer many plans at a time; however, they are criticized for showing low efficiency in the evaluation and repair of iteratively generated offspring solutions. To provide an efficient DAO method, this work proposes a multi-objective evolutionary algorithm with customized variation operators. These operators can not only generate promising plans but also ensure their validity, and thus the search efficiency is improved by the acceleration of convergence and the elimination of repair operations. The experimental results demonstrate that the proposed DAO method is superior over existing heuristics and metaheuristics in terms of both effectiveness and efficiency.
doi_str_mv 10.1109/TETCI.2023.3330513
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TETCI_2023_3330513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10321706</ieee_id><sourcerecordid>2995315717</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-9cdffec2d23f5caa44ab60f73abefb3fa669e1e5c245698c319b5b3b979feb6b3</originalsourceid><addsrcrecordid>eNpNkMtOAjEUhhujiQR5AeOiievBXqYzdElGVBISNnjZNW1ptQTo2HZI9OktDgtW55yc7z-XH4BbjMYYI_6wmq2a-ZggQseUUsQwvQADUta4IBP2cXmWX4NRjBuEEOGZYuUAfM6sddqZfYKPLhid4LQ1IXXBwGWb3M79yuT8Hh6chLOD33bHSoYf2Phd26W--e7SF2y6mHzmzRq-yeD6zjIPk8mHeAOurNxGMzrFIXh9yme_FIvl87yZLgqdj0wF12trjSZrQi3TUpalVBWyNZXKWEWtrCpusGGZZhWfaIq5YooqXnNrVKXoENz3c9vgvzsTk9j4LuzzSkE4ZxSzGteZIj2lg48xGCva4Hb5LYGROHoq_j0VR0_FydMsuutFzhhzJqAE16iif66Idkc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2995315717</pqid></control><display><type>article</type><title>Efficient Direct Aperture Optimization via Evolutionary Computation With Customized Variation Operators</title><source>IEEE Electronic Library (IEL)</source><creator>Tian, Ye ; Guang, Yaopei ; Si, Langchun ; Cao, Ruifen ; Pei, Xi ; Zhang, Xingyi</creator><creatorcontrib>Tian, Ye ; Guang, Yaopei ; Si, Langchun ; Cao, Ruifen ; Pei, Xi ; Zhang, Xingyi</creatorcontrib><description>As a popular technique for intensity-modulated radiotherapy, direct aperture optimization (DAO) aims at generating treatment plans for cancer cases without the relaxation of optimization models. Conventional DAO methods are mainly based on mathematical programming, which can quickly generate a single plan but is inefficient in offering multiple candidate plans for clinical doctors. Recently, metaheuristics have been employed by DAO to offer many plans at a time; however, they are criticized for showing low efficiency in the evaluation and repair of iteratively generated offspring solutions. To provide an efficient DAO method, this work proposes a multi-objective evolutionary algorithm with customized variation operators. These operators can not only generate promising plans but also ensure their validity, and thus the search efficiency is improved by the acceleration of convergence and the elimination of repair operations. The experimental results demonstrate that the proposed DAO method is superior over existing heuristics and metaheuristics in terms of both effectiveness and efficiency.</description><identifier>ISSN: 2471-285X</identifier><identifier>EISSN: 2471-285X</identifier><identifier>DOI: 10.1109/TETCI.2023.3330513</identifier><identifier>CODEN: ITETCU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Apertures ; Convergence ; Customization ; Direct aperture optimization ; Efficiency ; Evolutionary algorithms ; Evolutionary computation ; evolutionary multi-objective optimization ; Heuristic methods ; Maintenance engineering ; Mathematical programming ; Metaheuristics ; Operators (mathematics) ; Optimization ; Optimization models ; Pareto optimization ; Radiation therapy ; radiotherapy ; search efficiency ; Search problems ; variation operators</subject><ispartof>IEEE transactions on emerging topics in computational intelligence, 2024-04, Vol.8 (2), p.1388-1401</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-9cdffec2d23f5caa44ab60f73abefb3fa669e1e5c245698c319b5b3b979feb6b3</cites><orcidid>0009-0009-0476-7552 ; 0000-0002-3487-5126 ; 0000-0002-5052-000X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10321706$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10321706$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tian, Ye</creatorcontrib><creatorcontrib>Guang, Yaopei</creatorcontrib><creatorcontrib>Si, Langchun</creatorcontrib><creatorcontrib>Cao, Ruifen</creatorcontrib><creatorcontrib>Pei, Xi</creatorcontrib><creatorcontrib>Zhang, Xingyi</creatorcontrib><title>Efficient Direct Aperture Optimization via Evolutionary Computation With Customized Variation Operators</title><title>IEEE transactions on emerging topics in computational intelligence</title><addtitle>TETCI</addtitle><description>As a popular technique for intensity-modulated radiotherapy, direct aperture optimization (DAO) aims at generating treatment plans for cancer cases without the relaxation of optimization models. Conventional DAO methods are mainly based on mathematical programming, which can quickly generate a single plan but is inefficient in offering multiple candidate plans for clinical doctors. Recently, metaheuristics have been employed by DAO to offer many plans at a time; however, they are criticized for showing low efficiency in the evaluation and repair of iteratively generated offspring solutions. To provide an efficient DAO method, this work proposes a multi-objective evolutionary algorithm with customized variation operators. These operators can not only generate promising plans but also ensure their validity, and thus the search efficiency is improved by the acceleration of convergence and the elimination of repair operations. The experimental results demonstrate that the proposed DAO method is superior over existing heuristics and metaheuristics in terms of both effectiveness and efficiency.</description><subject>Apertures</subject><subject>Convergence</subject><subject>Customization</subject><subject>Direct aperture optimization</subject><subject>Efficiency</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>evolutionary multi-objective optimization</subject><subject>Heuristic methods</subject><subject>Maintenance engineering</subject><subject>Mathematical programming</subject><subject>Metaheuristics</subject><subject>Operators (mathematics)</subject><subject>Optimization</subject><subject>Optimization models</subject><subject>Pareto optimization</subject><subject>Radiation therapy</subject><subject>radiotherapy</subject><subject>search efficiency</subject><subject>Search problems</subject><subject>variation operators</subject><issn>2471-285X</issn><issn>2471-285X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtOAjEUhhujiQR5AeOiievBXqYzdElGVBISNnjZNW1ptQTo2HZI9OktDgtW55yc7z-XH4BbjMYYI_6wmq2a-ZggQseUUsQwvQADUta4IBP2cXmWX4NRjBuEEOGZYuUAfM6sddqZfYKPLhid4LQ1IXXBwGWb3M79yuT8Hh6chLOD33bHSoYf2Phd26W--e7SF2y6mHzmzRq-yeD6zjIPk8mHeAOurNxGMzrFIXh9yme_FIvl87yZLgqdj0wF12trjSZrQi3TUpalVBWyNZXKWEWtrCpusGGZZhWfaIq5YooqXnNrVKXoENz3c9vgvzsTk9j4LuzzSkE4ZxSzGteZIj2lg48xGCva4Hb5LYGROHoq_j0VR0_FydMsuutFzhhzJqAE16iif66Idkc</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Tian, Ye</creator><creator>Guang, Yaopei</creator><creator>Si, Langchun</creator><creator>Cao, Ruifen</creator><creator>Pei, Xi</creator><creator>Zhang, Xingyi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0009-0476-7552</orcidid><orcidid>https://orcid.org/0000-0002-3487-5126</orcidid><orcidid>https://orcid.org/0000-0002-5052-000X</orcidid></search><sort><creationdate>20240401</creationdate><title>Efficient Direct Aperture Optimization via Evolutionary Computation With Customized Variation Operators</title><author>Tian, Ye ; Guang, Yaopei ; Si, Langchun ; Cao, Ruifen ; Pei, Xi ; Zhang, Xingyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-9cdffec2d23f5caa44ab60f73abefb3fa669e1e5c245698c319b5b3b979feb6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Apertures</topic><topic>Convergence</topic><topic>Customization</topic><topic>Direct aperture optimization</topic><topic>Efficiency</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>evolutionary multi-objective optimization</topic><topic>Heuristic methods</topic><topic>Maintenance engineering</topic><topic>Mathematical programming</topic><topic>Metaheuristics</topic><topic>Operators (mathematics)</topic><topic>Optimization</topic><topic>Optimization models</topic><topic>Pareto optimization</topic><topic>Radiation therapy</topic><topic>radiotherapy</topic><topic>search efficiency</topic><topic>Search problems</topic><topic>variation operators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Ye</creatorcontrib><creatorcontrib>Guang, Yaopei</creatorcontrib><creatorcontrib>Si, Langchun</creatorcontrib><creatorcontrib>Cao, Ruifen</creatorcontrib><creatorcontrib>Pei, Xi</creatorcontrib><creatorcontrib>Zhang, Xingyi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on emerging topics in computational intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tian, Ye</au><au>Guang, Yaopei</au><au>Si, Langchun</au><au>Cao, Ruifen</au><au>Pei, Xi</au><au>Zhang, Xingyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Direct Aperture Optimization via Evolutionary Computation With Customized Variation Operators</atitle><jtitle>IEEE transactions on emerging topics in computational intelligence</jtitle><stitle>TETCI</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>8</volume><issue>2</issue><spage>1388</spage><epage>1401</epage><pages>1388-1401</pages><issn>2471-285X</issn><eissn>2471-285X</eissn><coden>ITETCU</coden><abstract>As a popular technique for intensity-modulated radiotherapy, direct aperture optimization (DAO) aims at generating treatment plans for cancer cases without the relaxation of optimization models. Conventional DAO methods are mainly based on mathematical programming, which can quickly generate a single plan but is inefficient in offering multiple candidate plans for clinical doctors. Recently, metaheuristics have been employed by DAO to offer many plans at a time; however, they are criticized for showing low efficiency in the evaluation and repair of iteratively generated offspring solutions. To provide an efficient DAO method, this work proposes a multi-objective evolutionary algorithm with customized variation operators. These operators can not only generate promising plans but also ensure their validity, and thus the search efficiency is improved by the acceleration of convergence and the elimination of repair operations. The experimental results demonstrate that the proposed DAO method is superior over existing heuristics and metaheuristics in terms of both effectiveness and efficiency.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TETCI.2023.3330513</doi><tpages>14</tpages><orcidid>https://orcid.org/0009-0009-0476-7552</orcidid><orcidid>https://orcid.org/0000-0002-3487-5126</orcidid><orcidid>https://orcid.org/0000-0002-5052-000X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2471-285X
ispartof IEEE transactions on emerging topics in computational intelligence, 2024-04, Vol.8 (2), p.1388-1401
issn 2471-285X
2471-285X
language eng
recordid cdi_crossref_primary_10_1109_TETCI_2023_3330513
source IEEE Electronic Library (IEL)
subjects Apertures
Convergence
Customization
Direct aperture optimization
Efficiency
Evolutionary algorithms
Evolutionary computation
evolutionary multi-objective optimization
Heuristic methods
Maintenance engineering
Mathematical programming
Metaheuristics
Operators (mathematics)
Optimization
Optimization models
Pareto optimization
Radiation therapy
radiotherapy
search efficiency
Search problems
variation operators
title Efficient Direct Aperture Optimization via Evolutionary Computation With Customized Variation Operators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A04%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Direct%20Aperture%20Optimization%20via%20Evolutionary%20Computation%20With%20Customized%20Variation%20Operators&rft.jtitle=IEEE%20transactions%20on%20emerging%20topics%20in%20computational%20intelligence&rft.au=Tian,%20Ye&rft.date=2024-04-01&rft.volume=8&rft.issue=2&rft.spage=1388&rft.epage=1401&rft.pages=1388-1401&rft.issn=2471-285X&rft.eissn=2471-285X&rft.coden=ITETCU&rft_id=info:doi/10.1109/TETCI.2023.3330513&rft_dat=%3Cproquest_RIE%3E2995315717%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2995315717&rft_id=info:pmid/&rft_ieee_id=10321706&rfr_iscdi=true