Efficient Direct Aperture Optimization via Evolutionary Computation With Customized Variation Operators
As a popular technique for intensity-modulated radiotherapy, direct aperture optimization (DAO) aims at generating treatment plans for cancer cases without the relaxation of optimization models. Conventional DAO methods are mainly based on mathematical programming, which can quickly generate a singl...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on emerging topics in computational intelligence 2024-04, Vol.8 (2), p.1388-1401 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1401 |
---|---|
container_issue | 2 |
container_start_page | 1388 |
container_title | IEEE transactions on emerging topics in computational intelligence |
container_volume | 8 |
creator | Tian, Ye Guang, Yaopei Si, Langchun Cao, Ruifen Pei, Xi Zhang, Xingyi |
description | As a popular technique for intensity-modulated radiotherapy, direct aperture optimization (DAO) aims at generating treatment plans for cancer cases without the relaxation of optimization models. Conventional DAO methods are mainly based on mathematical programming, which can quickly generate a single plan but is inefficient in offering multiple candidate plans for clinical doctors. Recently, metaheuristics have been employed by DAO to offer many plans at a time; however, they are criticized for showing low efficiency in the evaluation and repair of iteratively generated offspring solutions. To provide an efficient DAO method, this work proposes a multi-objective evolutionary algorithm with customized variation operators. These operators can not only generate promising plans but also ensure their validity, and thus the search efficiency is improved by the acceleration of convergence and the elimination of repair operations. The experimental results demonstrate that the proposed DAO method is superior over existing heuristics and metaheuristics in terms of both effectiveness and efficiency. |
doi_str_mv | 10.1109/TETCI.2023.3330513 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TETCI_2023_3330513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10321706</ieee_id><sourcerecordid>2995315717</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-9cdffec2d23f5caa44ab60f73abefb3fa669e1e5c245698c319b5b3b979feb6b3</originalsourceid><addsrcrecordid>eNpNkMtOAjEUhhujiQR5AeOiievBXqYzdElGVBISNnjZNW1ptQTo2HZI9OktDgtW55yc7z-XH4BbjMYYI_6wmq2a-ZggQseUUsQwvQADUta4IBP2cXmWX4NRjBuEEOGZYuUAfM6sddqZfYKPLhid4LQ1IXXBwGWb3M79yuT8Hh6chLOD33bHSoYf2Phd26W--e7SF2y6mHzmzRq-yeD6zjIPk8mHeAOurNxGMzrFIXh9yme_FIvl87yZLgqdj0wF12trjSZrQi3TUpalVBWyNZXKWEWtrCpusGGZZhWfaIq5YooqXnNrVKXoENz3c9vgvzsTk9j4LuzzSkE4ZxSzGteZIj2lg48xGCva4Hb5LYGROHoq_j0VR0_FydMsuutFzhhzJqAE16iif66Idkc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2995315717</pqid></control><display><type>article</type><title>Efficient Direct Aperture Optimization via Evolutionary Computation With Customized Variation Operators</title><source>IEEE Electronic Library (IEL)</source><creator>Tian, Ye ; Guang, Yaopei ; Si, Langchun ; Cao, Ruifen ; Pei, Xi ; Zhang, Xingyi</creator><creatorcontrib>Tian, Ye ; Guang, Yaopei ; Si, Langchun ; Cao, Ruifen ; Pei, Xi ; Zhang, Xingyi</creatorcontrib><description>As a popular technique for intensity-modulated radiotherapy, direct aperture optimization (DAO) aims at generating treatment plans for cancer cases without the relaxation of optimization models. Conventional DAO methods are mainly based on mathematical programming, which can quickly generate a single plan but is inefficient in offering multiple candidate plans for clinical doctors. Recently, metaheuristics have been employed by DAO to offer many plans at a time; however, they are criticized for showing low efficiency in the evaluation and repair of iteratively generated offspring solutions. To provide an efficient DAO method, this work proposes a multi-objective evolutionary algorithm with customized variation operators. These operators can not only generate promising plans but also ensure their validity, and thus the search efficiency is improved by the acceleration of convergence and the elimination of repair operations. The experimental results demonstrate that the proposed DAO method is superior over existing heuristics and metaheuristics in terms of both effectiveness and efficiency.</description><identifier>ISSN: 2471-285X</identifier><identifier>EISSN: 2471-285X</identifier><identifier>DOI: 10.1109/TETCI.2023.3330513</identifier><identifier>CODEN: ITETCU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Apertures ; Convergence ; Customization ; Direct aperture optimization ; Efficiency ; Evolutionary algorithms ; Evolutionary computation ; evolutionary multi-objective optimization ; Heuristic methods ; Maintenance engineering ; Mathematical programming ; Metaheuristics ; Operators (mathematics) ; Optimization ; Optimization models ; Pareto optimization ; Radiation therapy ; radiotherapy ; search efficiency ; Search problems ; variation operators</subject><ispartof>IEEE transactions on emerging topics in computational intelligence, 2024-04, Vol.8 (2), p.1388-1401</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-9cdffec2d23f5caa44ab60f73abefb3fa669e1e5c245698c319b5b3b979feb6b3</cites><orcidid>0009-0009-0476-7552 ; 0000-0002-3487-5126 ; 0000-0002-5052-000X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10321706$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10321706$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tian, Ye</creatorcontrib><creatorcontrib>Guang, Yaopei</creatorcontrib><creatorcontrib>Si, Langchun</creatorcontrib><creatorcontrib>Cao, Ruifen</creatorcontrib><creatorcontrib>Pei, Xi</creatorcontrib><creatorcontrib>Zhang, Xingyi</creatorcontrib><title>Efficient Direct Aperture Optimization via Evolutionary Computation With Customized Variation Operators</title><title>IEEE transactions on emerging topics in computational intelligence</title><addtitle>TETCI</addtitle><description>As a popular technique for intensity-modulated radiotherapy, direct aperture optimization (DAO) aims at generating treatment plans for cancer cases without the relaxation of optimization models. Conventional DAO methods are mainly based on mathematical programming, which can quickly generate a single plan but is inefficient in offering multiple candidate plans for clinical doctors. Recently, metaheuristics have been employed by DAO to offer many plans at a time; however, they are criticized for showing low efficiency in the evaluation and repair of iteratively generated offspring solutions. To provide an efficient DAO method, this work proposes a multi-objective evolutionary algorithm with customized variation operators. These operators can not only generate promising plans but also ensure their validity, and thus the search efficiency is improved by the acceleration of convergence and the elimination of repair operations. The experimental results demonstrate that the proposed DAO method is superior over existing heuristics and metaheuristics in terms of both effectiveness and efficiency.</description><subject>Apertures</subject><subject>Convergence</subject><subject>Customization</subject><subject>Direct aperture optimization</subject><subject>Efficiency</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>evolutionary multi-objective optimization</subject><subject>Heuristic methods</subject><subject>Maintenance engineering</subject><subject>Mathematical programming</subject><subject>Metaheuristics</subject><subject>Operators (mathematics)</subject><subject>Optimization</subject><subject>Optimization models</subject><subject>Pareto optimization</subject><subject>Radiation therapy</subject><subject>radiotherapy</subject><subject>search efficiency</subject><subject>Search problems</subject><subject>variation operators</subject><issn>2471-285X</issn><issn>2471-285X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMtOAjEUhhujiQR5AeOiievBXqYzdElGVBISNnjZNW1ptQTo2HZI9OktDgtW55yc7z-XH4BbjMYYI_6wmq2a-ZggQseUUsQwvQADUta4IBP2cXmWX4NRjBuEEOGZYuUAfM6sddqZfYKPLhid4LQ1IXXBwGWb3M79yuT8Hh6chLOD33bHSoYf2Phd26W--e7SF2y6mHzmzRq-yeD6zjIPk8mHeAOurNxGMzrFIXh9yme_FIvl87yZLgqdj0wF12trjSZrQi3TUpalVBWyNZXKWEWtrCpusGGZZhWfaIq5YooqXnNrVKXoENz3c9vgvzsTk9j4LuzzSkE4ZxSzGteZIj2lg48xGCva4Hb5LYGROHoq_j0VR0_FydMsuutFzhhzJqAE16iif66Idkc</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Tian, Ye</creator><creator>Guang, Yaopei</creator><creator>Si, Langchun</creator><creator>Cao, Ruifen</creator><creator>Pei, Xi</creator><creator>Zhang, Xingyi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0009-0476-7552</orcidid><orcidid>https://orcid.org/0000-0002-3487-5126</orcidid><orcidid>https://orcid.org/0000-0002-5052-000X</orcidid></search><sort><creationdate>20240401</creationdate><title>Efficient Direct Aperture Optimization via Evolutionary Computation With Customized Variation Operators</title><author>Tian, Ye ; Guang, Yaopei ; Si, Langchun ; Cao, Ruifen ; Pei, Xi ; Zhang, Xingyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-9cdffec2d23f5caa44ab60f73abefb3fa669e1e5c245698c319b5b3b979feb6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Apertures</topic><topic>Convergence</topic><topic>Customization</topic><topic>Direct aperture optimization</topic><topic>Efficiency</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>evolutionary multi-objective optimization</topic><topic>Heuristic methods</topic><topic>Maintenance engineering</topic><topic>Mathematical programming</topic><topic>Metaheuristics</topic><topic>Operators (mathematics)</topic><topic>Optimization</topic><topic>Optimization models</topic><topic>Pareto optimization</topic><topic>Radiation therapy</topic><topic>radiotherapy</topic><topic>search efficiency</topic><topic>Search problems</topic><topic>variation operators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Ye</creatorcontrib><creatorcontrib>Guang, Yaopei</creatorcontrib><creatorcontrib>Si, Langchun</creatorcontrib><creatorcontrib>Cao, Ruifen</creatorcontrib><creatorcontrib>Pei, Xi</creatorcontrib><creatorcontrib>Zhang, Xingyi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on emerging topics in computational intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tian, Ye</au><au>Guang, Yaopei</au><au>Si, Langchun</au><au>Cao, Ruifen</au><au>Pei, Xi</au><au>Zhang, Xingyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Direct Aperture Optimization via Evolutionary Computation With Customized Variation Operators</atitle><jtitle>IEEE transactions on emerging topics in computational intelligence</jtitle><stitle>TETCI</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>8</volume><issue>2</issue><spage>1388</spage><epage>1401</epage><pages>1388-1401</pages><issn>2471-285X</issn><eissn>2471-285X</eissn><coden>ITETCU</coden><abstract>As a popular technique for intensity-modulated radiotherapy, direct aperture optimization (DAO) aims at generating treatment plans for cancer cases without the relaxation of optimization models. Conventional DAO methods are mainly based on mathematical programming, which can quickly generate a single plan but is inefficient in offering multiple candidate plans for clinical doctors. Recently, metaheuristics have been employed by DAO to offer many plans at a time; however, they are criticized for showing low efficiency in the evaluation and repair of iteratively generated offspring solutions. To provide an efficient DAO method, this work proposes a multi-objective evolutionary algorithm with customized variation operators. These operators can not only generate promising plans but also ensure their validity, and thus the search efficiency is improved by the acceleration of convergence and the elimination of repair operations. The experimental results demonstrate that the proposed DAO method is superior over existing heuristics and metaheuristics in terms of both effectiveness and efficiency.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TETCI.2023.3330513</doi><tpages>14</tpages><orcidid>https://orcid.org/0009-0009-0476-7552</orcidid><orcidid>https://orcid.org/0000-0002-3487-5126</orcidid><orcidid>https://orcid.org/0000-0002-5052-000X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2471-285X |
ispartof | IEEE transactions on emerging topics in computational intelligence, 2024-04, Vol.8 (2), p.1388-1401 |
issn | 2471-285X 2471-285X |
language | eng |
recordid | cdi_crossref_primary_10_1109_TETCI_2023_3330513 |
source | IEEE Electronic Library (IEL) |
subjects | Apertures Convergence Customization Direct aperture optimization Efficiency Evolutionary algorithms Evolutionary computation evolutionary multi-objective optimization Heuristic methods Maintenance engineering Mathematical programming Metaheuristics Operators (mathematics) Optimization Optimization models Pareto optimization Radiation therapy radiotherapy search efficiency Search problems variation operators |
title | Efficient Direct Aperture Optimization via Evolutionary Computation With Customized Variation Operators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A04%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Direct%20Aperture%20Optimization%20via%20Evolutionary%20Computation%20With%20Customized%20Variation%20Operators&rft.jtitle=IEEE%20transactions%20on%20emerging%20topics%20in%20computational%20intelligence&rft.au=Tian,%20Ye&rft.date=2024-04-01&rft.volume=8&rft.issue=2&rft.spage=1388&rft.epage=1401&rft.pages=1388-1401&rft.issn=2471-285X&rft.eissn=2471-285X&rft.coden=ITETCU&rft_id=info:doi/10.1109/TETCI.2023.3330513&rft_dat=%3Cproquest_RIE%3E2995315717%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2995315717&rft_id=info:pmid/&rft_ieee_id=10321706&rfr_iscdi=true |