Behavior Recognition Using Multiple Depth Cameras Based on a Time-Variant Skeleton Vector Projection

User behavior recognition in a smart office environment is a challenging research task. Wearable sensors can be used to recognize behaviors, but such sensors could go unworn, making the recognition task unreliable. Cameras are also used to recognize behaviors, but occlusions and unstable lighting co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on emerging topics in computational intelligence 2017-08, Vol.1 (4), p.294-304
Hauptverfasser: Kuo, Chien-Hao, Chang, Pao-Chi, Sun, Shih-Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 304
container_issue 4
container_start_page 294
container_title IEEE transactions on emerging topics in computational intelligence
container_volume 1
creator Kuo, Chien-Hao
Chang, Pao-Chi
Sun, Shih-Wei
description User behavior recognition in a smart office environment is a challenging research task. Wearable sensors can be used to recognize behaviors, but such sensors could go unworn, making the recognition task unreliable. Cameras are also used to recognize behaviors, but occlusions and unstable lighting conditions reduce such methods' recognition accuracy. To address these problems, we propose a time-variant skeleton vector projection scheme using multiple infrared-based depth cameras for behavior recognition. The contribution of this paper is threefold: (1) The proposed method can extract reliable projected skeleton vector features by compensating occluded data using nonoccluded data; (2) the proposed occlusion-based weighting element generation can be employed to train support-vector-machine-based classifiers to recognize behaviors in a multiple-view environment; and (3) the proposed method achieves superior behavior recognition accuracy and involves less computational complexity compared with other state-of-the-art methods for practical testing environments.
doi_str_mv 10.1109/TETCI.2017.2674186
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TETCI_2017_2674186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7862724</ieee_id><sourcerecordid>10_1109_TETCI_2017_2674186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-52ac8c390ca6c2079645d950450ead6823de3e1127df96d7f074cf0ad081b14d3</originalsourceid><addsrcrecordid>eNpNkN1OAjEUhBujiQR5Ab3pCyy23f7sXgoqkmA0CsS7TW3PQnHZJW018e0tQoxXZ3IyM5l8CF1SMqSUlNfzu_l4OmSEqiGTitNCnqAe44pmrBBvp__0ORqEsCGEsFLQXPAesiNY6y_XefwCplu1LrquxYvg2hV-_Gyi2zWAb2EX13ist-B1wCMdwOLk0njutpAttXe6jfj1AxqI6b8EE1Phs-82SaW-C3RW6ybA4Hj7aHGfNj9ks6fJdHwzy0zaHTPBtClMXhKjpWFElZILWwrCBQFtZcFyCzlQypStS2lVTRQ3NdGWFPSdcpv3ETv0Gt-F4KGudt5ttf-uKKn2qKpfVNUeVXVElUJXh5ADgL-AKiRTjOc_ja1l-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Behavior Recognition Using Multiple Depth Cameras Based on a Time-Variant Skeleton Vector Projection</title><source>IEEE Electronic Library (IEL)</source><creator>Kuo, Chien-Hao ; Chang, Pao-Chi ; Sun, Shih-Wei</creator><creatorcontrib>Kuo, Chien-Hao ; Chang, Pao-Chi ; Sun, Shih-Wei</creatorcontrib><description>User behavior recognition in a smart office environment is a challenging research task. Wearable sensors can be used to recognize behaviors, but such sensors could go unworn, making the recognition task unreliable. Cameras are also used to recognize behaviors, but occlusions and unstable lighting conditions reduce such methods' recognition accuracy. To address these problems, we propose a time-variant skeleton vector projection scheme using multiple infrared-based depth cameras for behavior recognition. The contribution of this paper is threefold: (1) The proposed method can extract reliable projected skeleton vector features by compensating occluded data using nonoccluded data; (2) the proposed occlusion-based weighting element generation can be employed to train support-vector-machine-based classifiers to recognize behaviors in a multiple-view environment; and (3) the proposed method achieves superior behavior recognition accuracy and involves less computational complexity compared with other state-of-the-art methods for practical testing environments.</description><identifier>ISSN: 2471-285X</identifier><identifier>EISSN: 2471-285X</identifier><identifier>DOI: 10.1109/TETCI.2017.2674186</identifier><identifier>CODEN: ITETCU</identifier><language>eng</language><publisher>IEEE</publisher><subject>Behavior recognition ; Cameras ; depth camera ; Feature extraction ; Hidden Markov models ; Intelligent sensors ; joint ; Kinect ; multiple cameras ; Skeleton ; Wearable sensors</subject><ispartof>IEEE transactions on emerging topics in computational intelligence, 2017-08, Vol.1 (4), p.294-304</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c267t-52ac8c390ca6c2079645d950450ead6823de3e1127df96d7f074cf0ad081b14d3</citedby><cites>FETCH-LOGICAL-c267t-52ac8c390ca6c2079645d950450ead6823de3e1127df96d7f074cf0ad081b14d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7862724$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7862724$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kuo, Chien-Hao</creatorcontrib><creatorcontrib>Chang, Pao-Chi</creatorcontrib><creatorcontrib>Sun, Shih-Wei</creatorcontrib><title>Behavior Recognition Using Multiple Depth Cameras Based on a Time-Variant Skeleton Vector Projection</title><title>IEEE transactions on emerging topics in computational intelligence</title><addtitle>TETCI</addtitle><description>User behavior recognition in a smart office environment is a challenging research task. Wearable sensors can be used to recognize behaviors, but such sensors could go unworn, making the recognition task unreliable. Cameras are also used to recognize behaviors, but occlusions and unstable lighting conditions reduce such methods' recognition accuracy. To address these problems, we propose a time-variant skeleton vector projection scheme using multiple infrared-based depth cameras for behavior recognition. The contribution of this paper is threefold: (1) The proposed method can extract reliable projected skeleton vector features by compensating occluded data using nonoccluded data; (2) the proposed occlusion-based weighting element generation can be employed to train support-vector-machine-based classifiers to recognize behaviors in a multiple-view environment; and (3) the proposed method achieves superior behavior recognition accuracy and involves less computational complexity compared with other state-of-the-art methods for practical testing environments.</description><subject>Behavior recognition</subject><subject>Cameras</subject><subject>depth camera</subject><subject>Feature extraction</subject><subject>Hidden Markov models</subject><subject>Intelligent sensors</subject><subject>joint</subject><subject>Kinect</subject><subject>multiple cameras</subject><subject>Skeleton</subject><subject>Wearable sensors</subject><issn>2471-285X</issn><issn>2471-285X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkN1OAjEUhBujiQR5Ab3pCyy23f7sXgoqkmA0CsS7TW3PQnHZJW018e0tQoxXZ3IyM5l8CF1SMqSUlNfzu_l4OmSEqiGTitNCnqAe44pmrBBvp__0ORqEsCGEsFLQXPAesiNY6y_XefwCplu1LrquxYvg2hV-_Gyi2zWAb2EX13ist-B1wCMdwOLk0njutpAttXe6jfj1AxqI6b8EE1Phs-82SaW-C3RW6ybA4Hj7aHGfNj9ks6fJdHwzy0zaHTPBtClMXhKjpWFElZILWwrCBQFtZcFyCzlQypStS2lVTRQ3NdGWFPSdcpv3ETv0Gt-F4KGudt5ttf-uKKn2qKpfVNUeVXVElUJXh5ADgL-AKiRTjOc_ja1l-w</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Kuo, Chien-Hao</creator><creator>Chang, Pao-Chi</creator><creator>Sun, Shih-Wei</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201708</creationdate><title>Behavior Recognition Using Multiple Depth Cameras Based on a Time-Variant Skeleton Vector Projection</title><author>Kuo, Chien-Hao ; Chang, Pao-Chi ; Sun, Shih-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-52ac8c390ca6c2079645d950450ead6823de3e1127df96d7f074cf0ad081b14d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Behavior recognition</topic><topic>Cameras</topic><topic>depth camera</topic><topic>Feature extraction</topic><topic>Hidden Markov models</topic><topic>Intelligent sensors</topic><topic>joint</topic><topic>Kinect</topic><topic>multiple cameras</topic><topic>Skeleton</topic><topic>Wearable sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuo, Chien-Hao</creatorcontrib><creatorcontrib>Chang, Pao-Chi</creatorcontrib><creatorcontrib>Sun, Shih-Wei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on emerging topics in computational intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kuo, Chien-Hao</au><au>Chang, Pao-Chi</au><au>Sun, Shih-Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Behavior Recognition Using Multiple Depth Cameras Based on a Time-Variant Skeleton Vector Projection</atitle><jtitle>IEEE transactions on emerging topics in computational intelligence</jtitle><stitle>TETCI</stitle><date>2017-08</date><risdate>2017</risdate><volume>1</volume><issue>4</issue><spage>294</spage><epage>304</epage><pages>294-304</pages><issn>2471-285X</issn><eissn>2471-285X</eissn><coden>ITETCU</coden><abstract>User behavior recognition in a smart office environment is a challenging research task. Wearable sensors can be used to recognize behaviors, but such sensors could go unworn, making the recognition task unreliable. Cameras are also used to recognize behaviors, but occlusions and unstable lighting conditions reduce such methods' recognition accuracy. To address these problems, we propose a time-variant skeleton vector projection scheme using multiple infrared-based depth cameras for behavior recognition. The contribution of this paper is threefold: (1) The proposed method can extract reliable projected skeleton vector features by compensating occluded data using nonoccluded data; (2) the proposed occlusion-based weighting element generation can be employed to train support-vector-machine-based classifiers to recognize behaviors in a multiple-view environment; and (3) the proposed method achieves superior behavior recognition accuracy and involves less computational complexity compared with other state-of-the-art methods for practical testing environments.</abstract><pub>IEEE</pub><doi>10.1109/TETCI.2017.2674186</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2471-285X
ispartof IEEE transactions on emerging topics in computational intelligence, 2017-08, Vol.1 (4), p.294-304
issn 2471-285X
2471-285X
language eng
recordid cdi_crossref_primary_10_1109_TETCI_2017_2674186
source IEEE Electronic Library (IEL)
subjects Behavior recognition
Cameras
depth camera
Feature extraction
Hidden Markov models
Intelligent sensors
joint
Kinect
multiple cameras
Skeleton
Wearable sensors
title Behavior Recognition Using Multiple Depth Cameras Based on a Time-Variant Skeleton Vector Projection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A45%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Behavior%20Recognition%20Using%20Multiple%20Depth%20Cameras%20Based%20on%20a%20Time-Variant%20Skeleton%20Vector%20Projection&rft.jtitle=IEEE%20transactions%20on%20emerging%20topics%20in%20computational%20intelligence&rft.au=Kuo,%20Chien-Hao&rft.date=2017-08&rft.volume=1&rft.issue=4&rft.spage=294&rft.epage=304&rft.pages=294-304&rft.issn=2471-285X&rft.eissn=2471-285X&rft.coden=ITETCU&rft_id=info:doi/10.1109/TETCI.2017.2674186&rft_dat=%3Ccrossref_RIE%3E10_1109_TETCI_2017_2674186%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7862724&rfr_iscdi=true