An FMEA Risk Assessment Method Based on Social Networks Considering Expert Clustering and Risk Attitudes

Failure mode and effect analysis (FMEA) method has been widely utilized to solve the problem of risk assessment in all walks of life. An FMEA decision support model considering expert clustering and risk attitude is constructed. First, expert risk assessment information is processed in cloud environ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on engineering management 2024, Vol.71, p.10783-10796
Hauptverfasser: Liu, Peide, Xu, Yiqiao, Li, Ying, Geng, Yushui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10796
container_issue
container_start_page 10783
container_title IEEE transactions on engineering management
container_volume 71
creator Liu, Peide
Xu, Yiqiao
Li, Ying
Geng, Yushui
description Failure mode and effect analysis (FMEA) method has been widely utilized to solve the problem of risk assessment in all walks of life. An FMEA decision support model considering expert clustering and risk attitude is constructed. First, expert risk assessment information is processed in cloud environment. The clustering behavior of experts is simulated based on trust relationship, opinion similarity, and risk attitude similarity. Second, consensus opinions are formed through opinion evolution, and the group weight determination model is constructed considering the group size and consensus level. Finally, a linear programming model minimizing individual regret is used to solve the risk factor (RF) weight problem. Combined with regret theory and the TODIM method considering finite rationality, the priority of risk is determined. The novel FMEA approach is applied to address reliability management problem of smart bracelets. Sensitivity and comparative analyses demonstrated the effectiveness and superiority of this method and enrich the theoretical research of the FMEA approach.
doi_str_mv 10.1109/TEM.2024.3402949
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TEM_2024_3402949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10536621</ieee_id><sourcerecordid>3065465547</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-e0074d4948b492e5e75f6dedcd9d5981114a52a3792c9459c781829c657a711b3</originalsourceid><addsrcrecordid>eNpNkDFPwzAQRi0EEqWwMzBYYk6xHTuJxxClgNSCBGW20vhK05a4-BwB_55U6cB0utP7vpMeIdecTThn-m5RzieCCTmJJRNa6hMy4kplEWOSnZIRYzyLdKz5OblA3PSrVIKNyDpv6XRe5vS1wS3NEQHxE9pA5xDWztL7CsFS19I3VzfVjj5D-HZ-i7RwLTYWfNN-0PJnDz7QYtdhGC5Va4-NITShs4CX5GxV7RCujnNM3qfloniMZi8PT0U-i2ohVYiAsVRaqWW2lFqAglStEgu2ttoqnXHOZaVEFada1FoqXacZz4SuE5VWKefLeExuh969d18dYDAb1_m2f2liliiZKCXTnmIDVXuH6GFl9r75rPyv4cwcfJrepzn4NEeffeRmiDQA8A9XcZIIHv8BBm1wCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3065465547</pqid></control><display><type>article</type><title>An FMEA Risk Assessment Method Based on Social Networks Considering Expert Clustering and Risk Attitudes</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Peide ; Xu, Yiqiao ; Li, Ying ; Geng, Yushui</creator><creatorcontrib>Liu, Peide ; Xu, Yiqiao ; Li, Ying ; Geng, Yushui</creatorcontrib><description>Failure mode and effect analysis (FMEA) method has been widely utilized to solve the problem of risk assessment in all walks of life. An FMEA decision support model considering expert clustering and risk attitude is constructed. First, expert risk assessment information is processed in cloud environment. The clustering behavior of experts is simulated based on trust relationship, opinion similarity, and risk attitude similarity. Second, consensus opinions are formed through opinion evolution, and the group weight determination model is constructed considering the group size and consensus level. Finally, a linear programming model minimizing individual regret is used to solve the risk factor (RF) weight problem. Combined with regret theory and the TODIM method considering finite rationality, the priority of risk is determined. The novel FMEA approach is applied to address reliability management problem of smart bracelets. Sensitivity and comparative analyses demonstrated the effectiveness and superiority of this method and enrich the theoretical research of the FMEA approach.</description><identifier>ISSN: 0018-9391</identifier><identifier>EISSN: 1558-0040</identifier><identifier>DOI: 10.1109/TEM.2024.3402949</identifier><identifier>CODEN: IEEMA4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Attitudes ; Clustering ; Comparative analysis ; Decision theory ; Expert clustering ; failure mode and effect analysis (FMEA) ; Failure modes ; Frequency modulation ; Linear programming ; Psychology ; Quality management ; Radio frequency ; Reliability ; Risk assessment ; risk attitude ; Risk factors ; Risk management ; Similarity ; social network ; Social networking (online) ; Social networks ; TODIM</subject><ispartof>IEEE transactions on engineering management, 2024, Vol.71, p.10783-10796</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-e0074d4948b492e5e75f6dedcd9d5981114a52a3792c9459c781829c657a711b3</cites><orcidid>0000-0001-5048-8145 ; 0000-0001-5926-5538 ; 0009-0001-7587-4242 ; 0000-0002-4780-0529</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10536621$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10536621$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Peide</creatorcontrib><creatorcontrib>Xu, Yiqiao</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Geng, Yushui</creatorcontrib><title>An FMEA Risk Assessment Method Based on Social Networks Considering Expert Clustering and Risk Attitudes</title><title>IEEE transactions on engineering management</title><addtitle>TEM</addtitle><description>Failure mode and effect analysis (FMEA) method has been widely utilized to solve the problem of risk assessment in all walks of life. An FMEA decision support model considering expert clustering and risk attitude is constructed. First, expert risk assessment information is processed in cloud environment. The clustering behavior of experts is simulated based on trust relationship, opinion similarity, and risk attitude similarity. Second, consensus opinions are formed through opinion evolution, and the group weight determination model is constructed considering the group size and consensus level. Finally, a linear programming model minimizing individual regret is used to solve the risk factor (RF) weight problem. Combined with regret theory and the TODIM method considering finite rationality, the priority of risk is determined. The novel FMEA approach is applied to address reliability management problem of smart bracelets. Sensitivity and comparative analyses demonstrated the effectiveness and superiority of this method and enrich the theoretical research of the FMEA approach.</description><subject>Attitudes</subject><subject>Clustering</subject><subject>Comparative analysis</subject><subject>Decision theory</subject><subject>Expert clustering</subject><subject>failure mode and effect analysis (FMEA)</subject><subject>Failure modes</subject><subject>Frequency modulation</subject><subject>Linear programming</subject><subject>Psychology</subject><subject>Quality management</subject><subject>Radio frequency</subject><subject>Reliability</subject><subject>Risk assessment</subject><subject>risk attitude</subject><subject>Risk factors</subject><subject>Risk management</subject><subject>Similarity</subject><subject>social network</subject><subject>Social networking (online)</subject><subject>Social networks</subject><subject>TODIM</subject><issn>0018-9391</issn><issn>1558-0040</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkDFPwzAQRi0EEqWwMzBYYk6xHTuJxxClgNSCBGW20vhK05a4-BwB_55U6cB0utP7vpMeIdecTThn-m5RzieCCTmJJRNa6hMy4kplEWOSnZIRYzyLdKz5OblA3PSrVIKNyDpv6XRe5vS1wS3NEQHxE9pA5xDWztL7CsFS19I3VzfVjj5D-HZ-i7RwLTYWfNN-0PJnDz7QYtdhGC5Va4-NITShs4CX5GxV7RCujnNM3qfloniMZi8PT0U-i2ohVYiAsVRaqWW2lFqAglStEgu2ttoqnXHOZaVEFada1FoqXacZz4SuE5VWKefLeExuh969d18dYDAb1_m2f2liliiZKCXTnmIDVXuH6GFl9r75rPyv4cwcfJrepzn4NEeffeRmiDQA8A9XcZIIHv8BBm1wCA</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Liu, Peide</creator><creator>Xu, Yiqiao</creator><creator>Li, Ying</creator><creator>Geng, Yushui</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5048-8145</orcidid><orcidid>https://orcid.org/0000-0001-5926-5538</orcidid><orcidid>https://orcid.org/0009-0001-7587-4242</orcidid><orcidid>https://orcid.org/0000-0002-4780-0529</orcidid></search><sort><creationdate>2024</creationdate><title>An FMEA Risk Assessment Method Based on Social Networks Considering Expert Clustering and Risk Attitudes</title><author>Liu, Peide ; Xu, Yiqiao ; Li, Ying ; Geng, Yushui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-e0074d4948b492e5e75f6dedcd9d5981114a52a3792c9459c781829c657a711b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Attitudes</topic><topic>Clustering</topic><topic>Comparative analysis</topic><topic>Decision theory</topic><topic>Expert clustering</topic><topic>failure mode and effect analysis (FMEA)</topic><topic>Failure modes</topic><topic>Frequency modulation</topic><topic>Linear programming</topic><topic>Psychology</topic><topic>Quality management</topic><topic>Radio frequency</topic><topic>Reliability</topic><topic>Risk assessment</topic><topic>risk attitude</topic><topic>Risk factors</topic><topic>Risk management</topic><topic>Similarity</topic><topic>social network</topic><topic>Social networking (online)</topic><topic>Social networks</topic><topic>TODIM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Peide</creatorcontrib><creatorcontrib>Xu, Yiqiao</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Geng, Yushui</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on engineering management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Peide</au><au>Xu, Yiqiao</au><au>Li, Ying</au><au>Geng, Yushui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An FMEA Risk Assessment Method Based on Social Networks Considering Expert Clustering and Risk Attitudes</atitle><jtitle>IEEE transactions on engineering management</jtitle><stitle>TEM</stitle><date>2024</date><risdate>2024</risdate><volume>71</volume><spage>10783</spage><epage>10796</epage><pages>10783-10796</pages><issn>0018-9391</issn><eissn>1558-0040</eissn><coden>IEEMA4</coden><abstract>Failure mode and effect analysis (FMEA) method has been widely utilized to solve the problem of risk assessment in all walks of life. An FMEA decision support model considering expert clustering and risk attitude is constructed. First, expert risk assessment information is processed in cloud environment. The clustering behavior of experts is simulated based on trust relationship, opinion similarity, and risk attitude similarity. Second, consensus opinions are formed through opinion evolution, and the group weight determination model is constructed considering the group size and consensus level. Finally, a linear programming model minimizing individual regret is used to solve the risk factor (RF) weight problem. Combined with regret theory and the TODIM method considering finite rationality, the priority of risk is determined. The novel FMEA approach is applied to address reliability management problem of smart bracelets. Sensitivity and comparative analyses demonstrated the effectiveness and superiority of this method and enrich the theoretical research of the FMEA approach.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEM.2024.3402949</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5048-8145</orcidid><orcidid>https://orcid.org/0000-0001-5926-5538</orcidid><orcidid>https://orcid.org/0009-0001-7587-4242</orcidid><orcidid>https://orcid.org/0000-0002-4780-0529</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9391
ispartof IEEE transactions on engineering management, 2024, Vol.71, p.10783-10796
issn 0018-9391
1558-0040
language eng
recordid cdi_crossref_primary_10_1109_TEM_2024_3402949
source IEEE Electronic Library (IEL)
subjects Attitudes
Clustering
Comparative analysis
Decision theory
Expert clustering
failure mode and effect analysis (FMEA)
Failure modes
Frequency modulation
Linear programming
Psychology
Quality management
Radio frequency
Reliability
Risk assessment
risk attitude
Risk factors
Risk management
Similarity
social network
Social networking (online)
Social networks
TODIM
title An FMEA Risk Assessment Method Based on Social Networks Considering Expert Clustering and Risk Attitudes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A07%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20FMEA%20Risk%20Assessment%20Method%20Based%20on%20Social%20Networks%20Considering%20Expert%20Clustering%20and%20Risk%20Attitudes&rft.jtitle=IEEE%20transactions%20on%20engineering%20management&rft.au=Liu,%20Peide&rft.date=2024&rft.volume=71&rft.spage=10783&rft.epage=10796&rft.pages=10783-10796&rft.issn=0018-9391&rft.eissn=1558-0040&rft.coden=IEEMA4&rft_id=info:doi/10.1109/TEM.2024.3402949&rft_dat=%3Cproquest_RIE%3E3065465547%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3065465547&rft_id=info:pmid/&rft_ieee_id=10536621&rfr_iscdi=true