Digital Health Innovation: Exploring Adoption of COVID-19 Digital Contact Tracing Apps
With the outbreak of COVID-19, contact tracing is becoming a used intervention to control the spread of this highly infectious disease. This article explores an individual's intention to adopt COVID-19 digital contact tracing (DCT) apps. A conceptual framework developed for this article combine...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on engineering management 2024-01, Vol.71, p.12272-12288 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12288 |
---|---|
container_issue | |
container_start_page | 12272 |
container_title | IEEE transactions on engineering management |
container_volume | 71 |
creator | Sharma, Shavneet Singh, Gurmeet Sharma, Rashmini Jones, Paul Kraus, Sascha Dwivedi, Yogesh K. |
description | With the outbreak of COVID-19, contact tracing is becoming a used intervention to control the spread of this highly infectious disease. This article explores an individual's intention to adopt COVID-19 digital contact tracing (DCT) apps. A conceptual framework developed for this article combines the procedural fairness theory, dual calculus theory, protection motivation theory, theory of planned behavior, and Hofstede's cultural dimension theory. The study adopts a quantitative approach collecting data from 714 respondents using a random sampling technique. The proposed model is tested using structural equation modeling. Empirical results found that the perceived effectiveness of privacy policy negatively influenced privacy concerns, whereas perceived vulnerability had a positive influence. Expected personal and community-related outcomes of sharing information positively influenced attitudes toward DCT apps, while privacy concerns had a negative effect. The intention to adopt DCT apps were positively influenced by attitude, subjective norms, and privacy self-efficacy. This article is the first to empirically test the adoption of DCT apps of the COVID-19 pandemic and contributes both theoretically and practically toward understanding factors influencing its widespread adoption. |
doi_str_mv | 10.1109/TEM.2020.3019033 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TEM_2020_3019033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9198147</ieee_id><sourcerecordid>10_1109_TEM_2020_3019033</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-485a254efb98a72d601a10f9307771ae3aeb8e7fd74819b550cced8b0404fa63</originalsourceid><addsrcrecordid>eNo9kMFKw0AQhhdRsFbvgpd9gdSZ7G5311tJqy1Uegm9hkmyWyMxG5Ig-vamtnoa_uH_BuZj7B5hhgj2MV29zmKIYSYALQhxwSaolIkAJFyyCQCayAqL1-ym79_HKFUME7ZfVodqoJqvHdXDG980TfikoQrNE199tXXoqubAF2VojzsePE92-80yQsv_yCQ0AxUDTzsqfstt29-yK0917-7Oc8rS51WarKPt7mWTLLZRIdEMkTSKYiWdz60hHZdzQELwVoDWGskJcrlx2pdaGrS5UlAUrjT5-JP0NBdTBqezRRf6vnM-a7vqg7rvDCE7aslGLdlRS3bWMiIPJ6Ryzv3XLVqDUosfFyddXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Digital Health Innovation: Exploring Adoption of COVID-19 Digital Contact Tracing Apps</title><source>IEEE Electronic Library (IEL)</source><creator>Sharma, Shavneet ; Singh, Gurmeet ; Sharma, Rashmini ; Jones, Paul ; Kraus, Sascha ; Dwivedi, Yogesh K.</creator><creatorcontrib>Sharma, Shavneet ; Singh, Gurmeet ; Sharma, Rashmini ; Jones, Paul ; Kraus, Sascha ; Dwivedi, Yogesh K.</creatorcontrib><description>With the outbreak of COVID-19, contact tracing is becoming a used intervention to control the spread of this highly infectious disease. This article explores an individual's intention to adopt COVID-19 digital contact tracing (DCT) apps. A conceptual framework developed for this article combines the procedural fairness theory, dual calculus theory, protection motivation theory, theory of planned behavior, and Hofstede's cultural dimension theory. The study adopts a quantitative approach collecting data from 714 respondents using a random sampling technique. The proposed model is tested using structural equation modeling. Empirical results found that the perceived effectiveness of privacy policy negatively influenced privacy concerns, whereas perceived vulnerability had a positive influence. Expected personal and community-related outcomes of sharing information positively influenced attitudes toward DCT apps, while privacy concerns had a negative effect. The intention to adopt DCT apps were positively influenced by attitude, subjective norms, and privacy self-efficacy. This article is the first to empirically test the adoption of DCT apps of the COVID-19 pandemic and contributes both theoretically and practically toward understanding factors influencing its widespread adoption.</description><identifier>ISSN: 0018-9391</identifier><identifier>EISSN: 1558-0040</identifier><identifier>DOI: 10.1109/TEM.2020.3019033</identifier><identifier>CODEN: IEEMA4</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adoption intention ; Calculus ; COVID-19 ; Cultural differences ; Data privacy ; digital contact tracing (DCT) ; Government ; information disclosure ; Privacy</subject><ispartof>IEEE transactions on engineering management, 2024-01, Vol.71, p.12272-12288</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-485a254efb98a72d601a10f9307771ae3aeb8e7fd74819b550cced8b0404fa63</citedby><cites>FETCH-LOGICAL-c418t-485a254efb98a72d601a10f9307771ae3aeb8e7fd74819b550cced8b0404fa63</cites><orcidid>0000-0002-5547-9990 ; 0000-0001-5523-5091 ; 0000-0003-2931-0670 ; 0000-0003-4886-7482 ; 0000-0003-0417-9143</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9198147$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9198147$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sharma, Shavneet</creatorcontrib><creatorcontrib>Singh, Gurmeet</creatorcontrib><creatorcontrib>Sharma, Rashmini</creatorcontrib><creatorcontrib>Jones, Paul</creatorcontrib><creatorcontrib>Kraus, Sascha</creatorcontrib><creatorcontrib>Dwivedi, Yogesh K.</creatorcontrib><title>Digital Health Innovation: Exploring Adoption of COVID-19 Digital Contact Tracing Apps</title><title>IEEE transactions on engineering management</title><addtitle>TEM</addtitle><description>With the outbreak of COVID-19, contact tracing is becoming a used intervention to control the spread of this highly infectious disease. This article explores an individual's intention to adopt COVID-19 digital contact tracing (DCT) apps. A conceptual framework developed for this article combines the procedural fairness theory, dual calculus theory, protection motivation theory, theory of planned behavior, and Hofstede's cultural dimension theory. The study adopts a quantitative approach collecting data from 714 respondents using a random sampling technique. The proposed model is tested using structural equation modeling. Empirical results found that the perceived effectiveness of privacy policy negatively influenced privacy concerns, whereas perceived vulnerability had a positive influence. Expected personal and community-related outcomes of sharing information positively influenced attitudes toward DCT apps, while privacy concerns had a negative effect. The intention to adopt DCT apps were positively influenced by attitude, subjective norms, and privacy self-efficacy. This article is the first to empirically test the adoption of DCT apps of the COVID-19 pandemic and contributes both theoretically and practically toward understanding factors influencing its widespread adoption.</description><subject>Adoption intention</subject><subject>Calculus</subject><subject>COVID-19</subject><subject>Cultural differences</subject><subject>Data privacy</subject><subject>digital contact tracing (DCT)</subject><subject>Government</subject><subject>information disclosure</subject><subject>Privacy</subject><issn>0018-9391</issn><issn>1558-0040</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFKw0AQhhdRsFbvgpd9gdSZ7G5311tJqy1Uegm9hkmyWyMxG5Ig-vamtnoa_uH_BuZj7B5hhgj2MV29zmKIYSYALQhxwSaolIkAJFyyCQCayAqL1-ym79_HKFUME7ZfVodqoJqvHdXDG980TfikoQrNE199tXXoqubAF2VojzsePE92-80yQsv_yCQ0AxUDTzsqfstt29-yK0917-7Oc8rS51WarKPt7mWTLLZRIdEMkTSKYiWdz60hHZdzQELwVoDWGskJcrlx2pdaGrS5UlAUrjT5-JP0NBdTBqezRRf6vnM-a7vqg7rvDCE7aslGLdlRS3bWMiIPJ6Ryzv3XLVqDUosfFyddXw</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Sharma, Shavneet</creator><creator>Singh, Gurmeet</creator><creator>Sharma, Rashmini</creator><creator>Jones, Paul</creator><creator>Kraus, Sascha</creator><creator>Dwivedi, Yogesh K.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5547-9990</orcidid><orcidid>https://orcid.org/0000-0001-5523-5091</orcidid><orcidid>https://orcid.org/0000-0003-2931-0670</orcidid><orcidid>https://orcid.org/0000-0003-4886-7482</orcidid><orcidid>https://orcid.org/0000-0003-0417-9143</orcidid></search><sort><creationdate>20240101</creationdate><title>Digital Health Innovation: Exploring Adoption of COVID-19 Digital Contact Tracing Apps</title><author>Sharma, Shavneet ; Singh, Gurmeet ; Sharma, Rashmini ; Jones, Paul ; Kraus, Sascha ; Dwivedi, Yogesh K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-485a254efb98a72d601a10f9307771ae3aeb8e7fd74819b550cced8b0404fa63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adoption intention</topic><topic>Calculus</topic><topic>COVID-19</topic><topic>Cultural differences</topic><topic>Data privacy</topic><topic>digital contact tracing (DCT)</topic><topic>Government</topic><topic>information disclosure</topic><topic>Privacy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Shavneet</creatorcontrib><creatorcontrib>Singh, Gurmeet</creatorcontrib><creatorcontrib>Sharma, Rashmini</creatorcontrib><creatorcontrib>Jones, Paul</creatorcontrib><creatorcontrib>Kraus, Sascha</creatorcontrib><creatorcontrib>Dwivedi, Yogesh K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on engineering management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sharma, Shavneet</au><au>Singh, Gurmeet</au><au>Sharma, Rashmini</au><au>Jones, Paul</au><au>Kraus, Sascha</au><au>Dwivedi, Yogesh K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Digital Health Innovation: Exploring Adoption of COVID-19 Digital Contact Tracing Apps</atitle><jtitle>IEEE transactions on engineering management</jtitle><stitle>TEM</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>71</volume><spage>12272</spage><epage>12288</epage><pages>12272-12288</pages><issn>0018-9391</issn><eissn>1558-0040</eissn><coden>IEEMA4</coden><abstract>With the outbreak of COVID-19, contact tracing is becoming a used intervention to control the spread of this highly infectious disease. This article explores an individual's intention to adopt COVID-19 digital contact tracing (DCT) apps. A conceptual framework developed for this article combines the procedural fairness theory, dual calculus theory, protection motivation theory, theory of planned behavior, and Hofstede's cultural dimension theory. The study adopts a quantitative approach collecting data from 714 respondents using a random sampling technique. The proposed model is tested using structural equation modeling. Empirical results found that the perceived effectiveness of privacy policy negatively influenced privacy concerns, whereas perceived vulnerability had a positive influence. Expected personal and community-related outcomes of sharing information positively influenced attitudes toward DCT apps, while privacy concerns had a negative effect. The intention to adopt DCT apps were positively influenced by attitude, subjective norms, and privacy self-efficacy. This article is the first to empirically test the adoption of DCT apps of the COVID-19 pandemic and contributes both theoretically and practically toward understanding factors influencing its widespread adoption.</abstract><pub>IEEE</pub><doi>10.1109/TEM.2020.3019033</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-5547-9990</orcidid><orcidid>https://orcid.org/0000-0001-5523-5091</orcidid><orcidid>https://orcid.org/0000-0003-2931-0670</orcidid><orcidid>https://orcid.org/0000-0003-4886-7482</orcidid><orcidid>https://orcid.org/0000-0003-0417-9143</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9391 |
ispartof | IEEE transactions on engineering management, 2024-01, Vol.71, p.12272-12288 |
issn | 0018-9391 1558-0040 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TEM_2020_3019033 |
source | IEEE Electronic Library (IEL) |
subjects | Adoption intention Calculus COVID-19 Cultural differences Data privacy digital contact tracing (DCT) Government information disclosure Privacy |
title | Digital Health Innovation: Exploring Adoption of COVID-19 Digital Contact Tracing Apps |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T15%3A57%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Digital%20Health%20Innovation:%20Exploring%20Adoption%20of%20COVID-19%20Digital%20Contact%20Tracing%20Apps&rft.jtitle=IEEE%20transactions%20on%20engineering%20management&rft.au=Sharma,%20Shavneet&rft.date=2024-01-01&rft.volume=71&rft.spage=12272&rft.epage=12288&rft.pages=12272-12288&rft.issn=0018-9391&rft.eissn=1558-0040&rft.coden=IEEMA4&rft_id=info:doi/10.1109/TEM.2020.3019033&rft_dat=%3Ccrossref_RIE%3E10_1109_TEM_2020_3019033%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9198147&rfr_iscdi=true |