A New Inductance Cancelation Scheme for Surface Mount Shunt Capacitor Filters
This article describes a new inductance cancelation scheme. The new scheme, named bilateral magnetic coupling (BMC), is applied to a surface mount shunt capacitor filter on a printed circuit board. In the filter structure, input/output paths are placed in parallel with the shunt path from a power su...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electromagnetic compatibility 2022-02, Vol.64 (3), p.1-9 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | 3 |
container_start_page | 1 |
container_title | IEEE transactions on electromagnetic compatibility |
container_volume | 64 |
creator | Kobayashi, Akihito Yuichi, Sasaki Naofumi, Yoneda |
description | This article describes a new inductance cancelation scheme. The new scheme, named bilateral magnetic coupling (BMC), is applied to a surface mount shunt capacitor filter on a printed circuit board. In the filter structure, input/output paths are placed in parallel with the shunt path from a power supply trace to a ground plane. To reduce parasitic inductance of the shunt path, magnetic couplings between the input/output paths and the shunt path are utilized. The theory of BMC is explained by the method of partial equivalent elements circuit. The filter parameter design of the BMC is investigated using parametric electromagnetic simulation. When BMC performance was evaluated on a test board, it improved by 4.5 dB at 100 MHz under operation of ICs. These results show that the BMC improves the filter performance in the frequency range from a few megahertz to subgigahertz, where noise reduction is important in digital systems. |
doi_str_mv | 10.1109/TEMC.2022.3142819 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TEMC_2022_3142819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9703193</ieee_id><sourcerecordid>2676778106</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-fe4d520c06a6699718c041c8b76b496df438103ec0238010ddfdfb7e03f925f63</originalsourceid><addsrcrecordid>eNo9kE9LAzEQxYMoWKsfQLwEPG-dJLv5cyxLq4VWD63gLaTZhG5pd2s2i_jtzdLi5Q3De28Gfgg9EpgQAuplM1uVEwqUThjJqSTqCo1IUciMSPF1jUYARGaKieIW3XXdPq15QdkIrab43f3gRVP1NprGOlwOejCxbhu8tjt3dNi3Aa_74E2yV23fRLzeDVqak7F1TO68PkQXunt0482hcw-XOUaf89mmfMuWH6-LcrrMLFUsZt7lVUHBAjecKyWItJATK7eCb3PFK58zSYA5C5RJIFBVvvJb4YB5RQvP2Rg9n--eQvvduy7qfduHJr3UlAsuRKoPKXJO2dB2XXBen0J9NOFXE9ADNT1Q0wM1faGWOk_nTu2c-88rASyZ7A-3zmdL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2676778106</pqid></control><display><type>article</type><title>A New Inductance Cancelation Scheme for Surface Mount Shunt Capacitor Filters</title><source>IEEE Electronic Library (IEL)</source><creator>Kobayashi, Akihito ; Yuichi, Sasaki ; Naofumi, Yoneda</creator><creatorcontrib>Kobayashi, Akihito ; Yuichi, Sasaki ; Naofumi, Yoneda</creatorcontrib><description>This article describes a new inductance cancelation scheme. The new scheme, named bilateral magnetic coupling (BMC), is applied to a surface mount shunt capacitor filter on a printed circuit board. In the filter structure, input/output paths are placed in parallel with the shunt path from a power supply trace to a ground plane. To reduce parasitic inductance of the shunt path, magnetic couplings between the input/output paths and the shunt path are utilized. The theory of BMC is explained by the method of partial equivalent elements circuit. The filter parameter design of the BMC is investigated using parametric electromagnetic simulation. When BMC performance was evaluated on a test board, it improved by 4.5 dB at 100 MHz under operation of ICs. These results show that the BMC improves the filter performance in the frequency range from a few megahertz to subgigahertz, where noise reduction is important in digital systems.</description><identifier>ISSN: 0018-9375</identifier><identifier>EISSN: 1558-187X</identifier><identifier>DOI: 10.1109/TEMC.2022.3142819</identifier><identifier>CODEN: IEMCAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Capacitors ; Circuit design ; Couplings ; Design parameters ; Digital systems ; Equivalent circuits ; Frequency ranges ; Ground plane ; I O filtering ; Inductance ; Inductance cancelation ; Inductors ; low-pass filters ; magnetic coupling ; Magnetic separation ; mutual inductance ; Parasitic elements (antennas) ; parasitic inductance ; Parasitics (electronics) ; Performance evaluation ; Shunt capacitors ; Shunts (electrical)</subject><ispartof>IEEE transactions on electromagnetic compatibility, 2022-02, Vol.64 (3), p.1-9</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-fe4d520c06a6699718c041c8b76b496df438103ec0238010ddfdfb7e03f925f63</citedby><cites>FETCH-LOGICAL-c293t-fe4d520c06a6699718c041c8b76b496df438103ec0238010ddfdfb7e03f925f63</cites><orcidid>0000-0002-7253-6600</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9703193$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9703193$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kobayashi, Akihito</creatorcontrib><creatorcontrib>Yuichi, Sasaki</creatorcontrib><creatorcontrib>Naofumi, Yoneda</creatorcontrib><title>A New Inductance Cancelation Scheme for Surface Mount Shunt Capacitor Filters</title><title>IEEE transactions on electromagnetic compatibility</title><addtitle>TEMC</addtitle><description>This article describes a new inductance cancelation scheme. The new scheme, named bilateral magnetic coupling (BMC), is applied to a surface mount shunt capacitor filter on a printed circuit board. In the filter structure, input/output paths are placed in parallel with the shunt path from a power supply trace to a ground plane. To reduce parasitic inductance of the shunt path, magnetic couplings between the input/output paths and the shunt path are utilized. The theory of BMC is explained by the method of partial equivalent elements circuit. The filter parameter design of the BMC is investigated using parametric electromagnetic simulation. When BMC performance was evaluated on a test board, it improved by 4.5 dB at 100 MHz under operation of ICs. These results show that the BMC improves the filter performance in the frequency range from a few megahertz to subgigahertz, where noise reduction is important in digital systems.</description><subject>Capacitors</subject><subject>Circuit design</subject><subject>Couplings</subject><subject>Design parameters</subject><subject>Digital systems</subject><subject>Equivalent circuits</subject><subject>Frequency ranges</subject><subject>Ground plane</subject><subject>I O filtering</subject><subject>Inductance</subject><subject>Inductance cancelation</subject><subject>Inductors</subject><subject>low-pass filters</subject><subject>magnetic coupling</subject><subject>Magnetic separation</subject><subject>mutual inductance</subject><subject>Parasitic elements (antennas)</subject><subject>parasitic inductance</subject><subject>Parasitics (electronics)</subject><subject>Performance evaluation</subject><subject>Shunt capacitors</subject><subject>Shunts (electrical)</subject><issn>0018-9375</issn><issn>1558-187X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9LAzEQxYMoWKsfQLwEPG-dJLv5cyxLq4VWD63gLaTZhG5pd2s2i_jtzdLi5Q3De28Gfgg9EpgQAuplM1uVEwqUThjJqSTqCo1IUciMSPF1jUYARGaKieIW3XXdPq15QdkIrab43f3gRVP1NprGOlwOejCxbhu8tjt3dNi3Aa_74E2yV23fRLzeDVqak7F1TO68PkQXunt0482hcw-XOUaf89mmfMuWH6-LcrrMLFUsZt7lVUHBAjecKyWItJATK7eCb3PFK58zSYA5C5RJIFBVvvJb4YB5RQvP2Rg9n--eQvvduy7qfduHJr3UlAsuRKoPKXJO2dB2XXBen0J9NOFXE9ADNT1Q0wM1faGWOk_nTu2c-88rASyZ7A-3zmdL</recordid><startdate>20220202</startdate><enddate>20220202</enddate><creator>Kobayashi, Akihito</creator><creator>Yuichi, Sasaki</creator><creator>Naofumi, Yoneda</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7253-6600</orcidid></search><sort><creationdate>20220202</creationdate><title>A New Inductance Cancelation Scheme for Surface Mount Shunt Capacitor Filters</title><author>Kobayashi, Akihito ; Yuichi, Sasaki ; Naofumi, Yoneda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-fe4d520c06a6699718c041c8b76b496df438103ec0238010ddfdfb7e03f925f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Capacitors</topic><topic>Circuit design</topic><topic>Couplings</topic><topic>Design parameters</topic><topic>Digital systems</topic><topic>Equivalent circuits</topic><topic>Frequency ranges</topic><topic>Ground plane</topic><topic>I O filtering</topic><topic>Inductance</topic><topic>Inductance cancelation</topic><topic>Inductors</topic><topic>low-pass filters</topic><topic>magnetic coupling</topic><topic>Magnetic separation</topic><topic>mutual inductance</topic><topic>Parasitic elements (antennas)</topic><topic>parasitic inductance</topic><topic>Parasitics (electronics)</topic><topic>Performance evaluation</topic><topic>Shunt capacitors</topic><topic>Shunts (electrical)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kobayashi, Akihito</creatorcontrib><creatorcontrib>Yuichi, Sasaki</creatorcontrib><creatorcontrib>Naofumi, Yoneda</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electromagnetic compatibility</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kobayashi, Akihito</au><au>Yuichi, Sasaki</au><au>Naofumi, Yoneda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Inductance Cancelation Scheme for Surface Mount Shunt Capacitor Filters</atitle><jtitle>IEEE transactions on electromagnetic compatibility</jtitle><stitle>TEMC</stitle><date>2022-02-02</date><risdate>2022</risdate><volume>64</volume><issue>3</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0018-9375</issn><eissn>1558-187X</eissn><coden>IEMCAE</coden><abstract>This article describes a new inductance cancelation scheme. The new scheme, named bilateral magnetic coupling (BMC), is applied to a surface mount shunt capacitor filter on a printed circuit board. In the filter structure, input/output paths are placed in parallel with the shunt path from a power supply trace to a ground plane. To reduce parasitic inductance of the shunt path, magnetic couplings between the input/output paths and the shunt path are utilized. The theory of BMC is explained by the method of partial equivalent elements circuit. The filter parameter design of the BMC is investigated using parametric electromagnetic simulation. When BMC performance was evaluated on a test board, it improved by 4.5 dB at 100 MHz under operation of ICs. These results show that the BMC improves the filter performance in the frequency range from a few megahertz to subgigahertz, where noise reduction is important in digital systems.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEMC.2022.3142819</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7253-6600</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9375 |
ispartof | IEEE transactions on electromagnetic compatibility, 2022-02, Vol.64 (3), p.1-9 |
issn | 0018-9375 1558-187X |
language | eng |
recordid | cdi_crossref_primary_10_1109_TEMC_2022_3142819 |
source | IEEE Electronic Library (IEL) |
subjects | Capacitors Circuit design Couplings Design parameters Digital systems Equivalent circuits Frequency ranges Ground plane I O filtering Inductance Inductance cancelation Inductors low-pass filters magnetic coupling Magnetic separation mutual inductance Parasitic elements (antennas) parasitic inductance Parasitics (electronics) Performance evaluation Shunt capacitors Shunts (electrical) |
title | A New Inductance Cancelation Scheme for Surface Mount Shunt Capacitor Filters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T14%3A06%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Inductance%20Cancelation%20Scheme%20for%20Surface%20Mount%20Shunt%20Capacitor%20Filters&rft.jtitle=IEEE%20transactions%20on%20electromagnetic%20compatibility&rft.au=Kobayashi,%20Akihito&rft.date=2022-02-02&rft.volume=64&rft.issue=3&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0018-9375&rft.eissn=1558-187X&rft.coden=IEMCAE&rft_id=info:doi/10.1109/TEMC.2022.3142819&rft_dat=%3Cproquest_RIE%3E2676778106%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2676778106&rft_id=info:pmid/&rft_ieee_id=9703193&rfr_iscdi=true |