A New Inductance Cancelation Scheme for Surface Mount Shunt Capacitor Filters

This article describes a new inductance cancelation scheme. The new scheme, named bilateral magnetic coupling (BMC), is applied to a surface mount shunt capacitor filter on a printed circuit board. In the filter structure, input/output paths are placed in parallel with the shunt path from a power su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electromagnetic compatibility 2022-02, Vol.64 (3), p.1-9
Hauptverfasser: Kobayashi, Akihito, Yuichi, Sasaki, Naofumi, Yoneda
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 3
container_start_page 1
container_title IEEE transactions on electromagnetic compatibility
container_volume 64
creator Kobayashi, Akihito
Yuichi, Sasaki
Naofumi, Yoneda
description This article describes a new inductance cancelation scheme. The new scheme, named bilateral magnetic coupling (BMC), is applied to a surface mount shunt capacitor filter on a printed circuit board. In the filter structure, input/output paths are placed in parallel with the shunt path from a power supply trace to a ground plane. To reduce parasitic inductance of the shunt path, magnetic couplings between the input/output paths and the shunt path are utilized. The theory of BMC is explained by the method of partial equivalent elements circuit. The filter parameter design of the BMC is investigated using parametric electromagnetic simulation. When BMC performance was evaluated on a test board, it improved by 4.5 dB at 100 MHz under operation of ICs. These results show that the BMC improves the filter performance in the frequency range from a few megahertz to subgigahertz, where noise reduction is important in digital systems.
doi_str_mv 10.1109/TEMC.2022.3142819
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TEMC_2022_3142819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9703193</ieee_id><sourcerecordid>2676778106</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-fe4d520c06a6699718c041c8b76b496df438103ec0238010ddfdfb7e03f925f63</originalsourceid><addsrcrecordid>eNo9kE9LAzEQxYMoWKsfQLwEPG-dJLv5cyxLq4VWD63gLaTZhG5pd2s2i_jtzdLi5Q3De28Gfgg9EpgQAuplM1uVEwqUThjJqSTqCo1IUciMSPF1jUYARGaKieIW3XXdPq15QdkIrab43f3gRVP1NprGOlwOejCxbhu8tjt3dNi3Aa_74E2yV23fRLzeDVqak7F1TO68PkQXunt0482hcw-XOUaf89mmfMuWH6-LcrrMLFUsZt7lVUHBAjecKyWItJATK7eCb3PFK58zSYA5C5RJIFBVvvJb4YB5RQvP2Rg9n--eQvvduy7qfduHJr3UlAsuRKoPKXJO2dB2XXBen0J9NOFXE9ADNT1Q0wM1faGWOk_nTu2c-88rASyZ7A-3zmdL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2676778106</pqid></control><display><type>article</type><title>A New Inductance Cancelation Scheme for Surface Mount Shunt Capacitor Filters</title><source>IEEE Electronic Library (IEL)</source><creator>Kobayashi, Akihito ; Yuichi, Sasaki ; Naofumi, Yoneda</creator><creatorcontrib>Kobayashi, Akihito ; Yuichi, Sasaki ; Naofumi, Yoneda</creatorcontrib><description>This article describes a new inductance cancelation scheme. The new scheme, named bilateral magnetic coupling (BMC), is applied to a surface mount shunt capacitor filter on a printed circuit board. In the filter structure, input/output paths are placed in parallel with the shunt path from a power supply trace to a ground plane. To reduce parasitic inductance of the shunt path, magnetic couplings between the input/output paths and the shunt path are utilized. The theory of BMC is explained by the method of partial equivalent elements circuit. The filter parameter design of the BMC is investigated using parametric electromagnetic simulation. When BMC performance was evaluated on a test board, it improved by 4.5 dB at 100 MHz under operation of ICs. These results show that the BMC improves the filter performance in the frequency range from a few megahertz to subgigahertz, where noise reduction is important in digital systems.</description><identifier>ISSN: 0018-9375</identifier><identifier>EISSN: 1558-187X</identifier><identifier>DOI: 10.1109/TEMC.2022.3142819</identifier><identifier>CODEN: IEMCAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Capacitors ; Circuit design ; Couplings ; Design parameters ; Digital systems ; Equivalent circuits ; Frequency ranges ; Ground plane ; I O filtering ; Inductance ; Inductance cancelation ; Inductors ; low-pass filters ; magnetic coupling ; Magnetic separation ; mutual inductance ; Parasitic elements (antennas) ; parasitic inductance ; Parasitics (electronics) ; Performance evaluation ; Shunt capacitors ; Shunts (electrical)</subject><ispartof>IEEE transactions on electromagnetic compatibility, 2022-02, Vol.64 (3), p.1-9</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-fe4d520c06a6699718c041c8b76b496df438103ec0238010ddfdfb7e03f925f63</citedby><cites>FETCH-LOGICAL-c293t-fe4d520c06a6699718c041c8b76b496df438103ec0238010ddfdfb7e03f925f63</cites><orcidid>0000-0002-7253-6600</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9703193$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9703193$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kobayashi, Akihito</creatorcontrib><creatorcontrib>Yuichi, Sasaki</creatorcontrib><creatorcontrib>Naofumi, Yoneda</creatorcontrib><title>A New Inductance Cancelation Scheme for Surface Mount Shunt Capacitor Filters</title><title>IEEE transactions on electromagnetic compatibility</title><addtitle>TEMC</addtitle><description>This article describes a new inductance cancelation scheme. The new scheme, named bilateral magnetic coupling (BMC), is applied to a surface mount shunt capacitor filter on a printed circuit board. In the filter structure, input/output paths are placed in parallel with the shunt path from a power supply trace to a ground plane. To reduce parasitic inductance of the shunt path, magnetic couplings between the input/output paths and the shunt path are utilized. The theory of BMC is explained by the method of partial equivalent elements circuit. The filter parameter design of the BMC is investigated using parametric electromagnetic simulation. When BMC performance was evaluated on a test board, it improved by 4.5 dB at 100 MHz under operation of ICs. These results show that the BMC improves the filter performance in the frequency range from a few megahertz to subgigahertz, where noise reduction is important in digital systems.</description><subject>Capacitors</subject><subject>Circuit design</subject><subject>Couplings</subject><subject>Design parameters</subject><subject>Digital systems</subject><subject>Equivalent circuits</subject><subject>Frequency ranges</subject><subject>Ground plane</subject><subject>I O filtering</subject><subject>Inductance</subject><subject>Inductance cancelation</subject><subject>Inductors</subject><subject>low-pass filters</subject><subject>magnetic coupling</subject><subject>Magnetic separation</subject><subject>mutual inductance</subject><subject>Parasitic elements (antennas)</subject><subject>parasitic inductance</subject><subject>Parasitics (electronics)</subject><subject>Performance evaluation</subject><subject>Shunt capacitors</subject><subject>Shunts (electrical)</subject><issn>0018-9375</issn><issn>1558-187X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9LAzEQxYMoWKsfQLwEPG-dJLv5cyxLq4VWD63gLaTZhG5pd2s2i_jtzdLi5Q3De28Gfgg9EpgQAuplM1uVEwqUThjJqSTqCo1IUciMSPF1jUYARGaKieIW3XXdPq15QdkIrab43f3gRVP1NprGOlwOejCxbhu8tjt3dNi3Aa_74E2yV23fRLzeDVqak7F1TO68PkQXunt0482hcw-XOUaf89mmfMuWH6-LcrrMLFUsZt7lVUHBAjecKyWItJATK7eCb3PFK58zSYA5C5RJIFBVvvJb4YB5RQvP2Rg9n--eQvvduy7qfduHJr3UlAsuRKoPKXJO2dB2XXBen0J9NOFXE9ADNT1Q0wM1faGWOk_nTu2c-88rASyZ7A-3zmdL</recordid><startdate>20220202</startdate><enddate>20220202</enddate><creator>Kobayashi, Akihito</creator><creator>Yuichi, Sasaki</creator><creator>Naofumi, Yoneda</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7253-6600</orcidid></search><sort><creationdate>20220202</creationdate><title>A New Inductance Cancelation Scheme for Surface Mount Shunt Capacitor Filters</title><author>Kobayashi, Akihito ; Yuichi, Sasaki ; Naofumi, Yoneda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-fe4d520c06a6699718c041c8b76b496df438103ec0238010ddfdfb7e03f925f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Capacitors</topic><topic>Circuit design</topic><topic>Couplings</topic><topic>Design parameters</topic><topic>Digital systems</topic><topic>Equivalent circuits</topic><topic>Frequency ranges</topic><topic>Ground plane</topic><topic>I O filtering</topic><topic>Inductance</topic><topic>Inductance cancelation</topic><topic>Inductors</topic><topic>low-pass filters</topic><topic>magnetic coupling</topic><topic>Magnetic separation</topic><topic>mutual inductance</topic><topic>Parasitic elements (antennas)</topic><topic>parasitic inductance</topic><topic>Parasitics (electronics)</topic><topic>Performance evaluation</topic><topic>Shunt capacitors</topic><topic>Shunts (electrical)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kobayashi, Akihito</creatorcontrib><creatorcontrib>Yuichi, Sasaki</creatorcontrib><creatorcontrib>Naofumi, Yoneda</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electromagnetic compatibility</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kobayashi, Akihito</au><au>Yuichi, Sasaki</au><au>Naofumi, Yoneda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Inductance Cancelation Scheme for Surface Mount Shunt Capacitor Filters</atitle><jtitle>IEEE transactions on electromagnetic compatibility</jtitle><stitle>TEMC</stitle><date>2022-02-02</date><risdate>2022</risdate><volume>64</volume><issue>3</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0018-9375</issn><eissn>1558-187X</eissn><coden>IEMCAE</coden><abstract>This article describes a new inductance cancelation scheme. The new scheme, named bilateral magnetic coupling (BMC), is applied to a surface mount shunt capacitor filter on a printed circuit board. In the filter structure, input/output paths are placed in parallel with the shunt path from a power supply trace to a ground plane. To reduce parasitic inductance of the shunt path, magnetic couplings between the input/output paths and the shunt path are utilized. The theory of BMC is explained by the method of partial equivalent elements circuit. The filter parameter design of the BMC is investigated using parametric electromagnetic simulation. When BMC performance was evaluated on a test board, it improved by 4.5 dB at 100 MHz under operation of ICs. These results show that the BMC improves the filter performance in the frequency range from a few megahertz to subgigahertz, where noise reduction is important in digital systems.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEMC.2022.3142819</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7253-6600</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9375
ispartof IEEE transactions on electromagnetic compatibility, 2022-02, Vol.64 (3), p.1-9
issn 0018-9375
1558-187X
language eng
recordid cdi_crossref_primary_10_1109_TEMC_2022_3142819
source IEEE Electronic Library (IEL)
subjects Capacitors
Circuit design
Couplings
Design parameters
Digital systems
Equivalent circuits
Frequency ranges
Ground plane
I O filtering
Inductance
Inductance cancelation
Inductors
low-pass filters
magnetic coupling
Magnetic separation
mutual inductance
Parasitic elements (antennas)
parasitic inductance
Parasitics (electronics)
Performance evaluation
Shunt capacitors
Shunts (electrical)
title A New Inductance Cancelation Scheme for Surface Mount Shunt Capacitor Filters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T14%3A06%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Inductance%20Cancelation%20Scheme%20for%20Surface%20Mount%20Shunt%20Capacitor%20Filters&rft.jtitle=IEEE%20transactions%20on%20electromagnetic%20compatibility&rft.au=Kobayashi,%20Akihito&rft.date=2022-02-02&rft.volume=64&rft.issue=3&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0018-9375&rft.eissn=1558-187X&rft.coden=IEMCAE&rft_id=info:doi/10.1109/TEMC.2022.3142819&rft_dat=%3Cproquest_RIE%3E2676778106%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2676778106&rft_id=info:pmid/&rft_ieee_id=9703193&rfr_iscdi=true