A Bayesian Approach for Spherical Harmonic Expansion Identification: Application to Magnetostatic Field Created by a Power Circuitry
This paper deals with the use of the Bayesian approach to inverse an underdetermined magnetostatic problem based on spherical harmonic expansion. Identification of the spherical harmonic coefficients is helped thanks to some a priori information. This information comes from a numerical model statist...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electromagnetic compatibility 2015-12, Vol.57 (6), p.1501-1509 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1509 |
---|---|
container_issue | 6 |
container_start_page | 1501 |
container_title | IEEE transactions on electromagnetic compatibility |
container_volume | 57 |
creator | Pinaud, Olivier Chadebec, Olivier Rouve, Laure-Line Coulomb, Jean-Louis Guichon, Jean-Michel Vassilev, Andrea |
description | This paper deals with the use of the Bayesian approach to inverse an underdetermined magnetostatic problem based on spherical harmonic expansion. Identification of the spherical harmonic coefficients is helped thanks to some a priori information. This information comes from a numerical model statistically studied to define an average-state vector and a covariance matrix. The whole approach is applied for the study of the magnetostatic field inside an electric vehicle, created by its power circuitry. It demonstrates the strength of merging a priori information and measured information in order to obtain an efficient identification of magnetic sources created by a complex set of conductors. |
doi_str_mv | 10.1109/TEMC.2015.2458353 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TEMC_2015_2458353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7175002</ieee_id><sourcerecordid>1793243429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-fb411e107ec2d18dd776cae098dc7dfa89d641599e7f8f1f8aa181cceabc41253</originalsourceid><addsrcrecordid>eNpdkUGP0zAQhSMEEmWXH4C4WOICh3Q9Tlw73ErUpSt1BRKLxM2aOhPqVRoHO92ld344Dq32wGn0xt8bjedl2RvgcwBeXd2tbuu54CDnopS6kMWzbAZS6hy0-vE8m3EOOq8KJV9mr2K8T7KUophlf5bsEx4pOuzZchiCR7tjrQ_s27Cj4Cx2bI1h73tn2er3gH10vmc3DfWja9PzmOTHydmdBRs9u8WfPY0-jqlj2bWjrmF1IBypYdsjQ_bVP1JgtQv24MZwvMxetNhFen2uF9n369Vdvc43Xz7f1MtNbktejHm7LQEIuCIrGtBNo9TCIvFKN1Y1LeqqWZQgq4pUq1toNSJosJZwa0sQsrjIPpzm7rAzQ3B7DEfj0Zn1cmOmHgexSCB_gMS-P7HpJr8OFEezd9FS12FP_hANqKoQZVGKKqHv_kPv_SH06SeJkpxrqQRPFJwoG3yMgdqnDYCbKUMzZWimDM05w-R5e_I4Inri1b-povgL1jyYnw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1750085720</pqid></control><display><type>article</type><title>A Bayesian Approach for Spherical Harmonic Expansion Identification: Application to Magnetostatic Field Created by a Power Circuitry</title><source>IEEE Electronic Library (IEL)</source><creator>Pinaud, Olivier ; Chadebec, Olivier ; Rouve, Laure-Line ; Coulomb, Jean-Louis ; Guichon, Jean-Michel ; Vassilev, Andrea</creator><creatorcontrib>Pinaud, Olivier ; Chadebec, Olivier ; Rouve, Laure-Line ; Coulomb, Jean-Louis ; Guichon, Jean-Michel ; Vassilev, Andrea</creatorcontrib><description>This paper deals with the use of the Bayesian approach to inverse an underdetermined magnetostatic problem based on spherical harmonic expansion. Identification of the spherical harmonic coefficients is helped thanks to some a priori information. This information comes from a numerical model statistically studied to define an average-state vector and a covariance matrix. The whole approach is applied for the study of the magnetostatic field inside an electric vehicle, created by its power circuitry. It demonstrates the strength of merging a priori information and measured information in order to obtain an efficient identification of magnetic sources created by a complex set of conductors.</description><identifier>ISSN: 0018-9375</identifier><identifier>EISSN: 1558-187X</identifier><identifier>DOI: 10.1109/TEMC.2015.2458353</identifier><identifier>CODEN: IEMCAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bayes theorem ; Bayesian analysis ; Computational modeling ; Covariance matrices ; Electric circuits ; Electric power ; Electric power generation ; Electromagnetic compatibility ; Engineering Sciences ; Harmonic analysis ; Inverse ; inverse problem theory ; Inverse problems ; Magnetostatic fields ; magnetostatics ; Mathematical models ; Numerical models ; Random variables ; random variables propagation ; Sensors ; Spherical harmonics</subject><ispartof>IEEE transactions on electromagnetic compatibility, 2015-12, Vol.57 (6), p.1501-1509</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-fb411e107ec2d18dd776cae098dc7dfa89d641599e7f8f1f8aa181cceabc41253</citedby><cites>FETCH-LOGICAL-c403t-fb411e107ec2d18dd776cae098dc7dfa89d641599e7f8f1f8aa181cceabc41253</cites><orcidid>0000-0003-4708-5411 ; 0000-0003-2460-6237 ; 0000-0003-3684-4427 ; 0000-0002-4334-1855</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7175002$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7175002$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-01261250$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Pinaud, Olivier</creatorcontrib><creatorcontrib>Chadebec, Olivier</creatorcontrib><creatorcontrib>Rouve, Laure-Line</creatorcontrib><creatorcontrib>Coulomb, Jean-Louis</creatorcontrib><creatorcontrib>Guichon, Jean-Michel</creatorcontrib><creatorcontrib>Vassilev, Andrea</creatorcontrib><title>A Bayesian Approach for Spherical Harmonic Expansion Identification: Application to Magnetostatic Field Created by a Power Circuitry</title><title>IEEE transactions on electromagnetic compatibility</title><addtitle>TEMC</addtitle><description>This paper deals with the use of the Bayesian approach to inverse an underdetermined magnetostatic problem based on spherical harmonic expansion. Identification of the spherical harmonic coefficients is helped thanks to some a priori information. This information comes from a numerical model statistically studied to define an average-state vector and a covariance matrix. The whole approach is applied for the study of the magnetostatic field inside an electric vehicle, created by its power circuitry. It demonstrates the strength of merging a priori information and measured information in order to obtain an efficient identification of magnetic sources created by a complex set of conductors.</description><subject>Bayes theorem</subject><subject>Bayesian analysis</subject><subject>Computational modeling</subject><subject>Covariance matrices</subject><subject>Electric circuits</subject><subject>Electric power</subject><subject>Electric power generation</subject><subject>Electromagnetic compatibility</subject><subject>Engineering Sciences</subject><subject>Harmonic analysis</subject><subject>Inverse</subject><subject>inverse problem theory</subject><subject>Inverse problems</subject><subject>Magnetostatic fields</subject><subject>magnetostatics</subject><subject>Mathematical models</subject><subject>Numerical models</subject><subject>Random variables</subject><subject>random variables propagation</subject><subject>Sensors</subject><subject>Spherical harmonics</subject><issn>0018-9375</issn><issn>1558-187X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkUGP0zAQhSMEEmWXH4C4WOICh3Q9Tlw73ErUpSt1BRKLxM2aOhPqVRoHO92ld344Dq32wGn0xt8bjedl2RvgcwBeXd2tbuu54CDnopS6kMWzbAZS6hy0-vE8m3EOOq8KJV9mr2K8T7KUophlf5bsEx4pOuzZchiCR7tjrQ_s27Cj4Cx2bI1h73tn2er3gH10vmc3DfWja9PzmOTHydmdBRs9u8WfPY0-jqlj2bWjrmF1IBypYdsjQ_bVP1JgtQv24MZwvMxetNhFen2uF9n369Vdvc43Xz7f1MtNbktejHm7LQEIuCIrGtBNo9TCIvFKN1Y1LeqqWZQgq4pUq1toNSJosJZwa0sQsrjIPpzm7rAzQ3B7DEfj0Zn1cmOmHgexSCB_gMS-P7HpJr8OFEezd9FS12FP_hANqKoQZVGKKqHv_kPv_SH06SeJkpxrqQRPFJwoG3yMgdqnDYCbKUMzZWimDM05w-R5e_I4Inri1b-povgL1jyYnw</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Pinaud, Olivier</creator><creator>Chadebec, Olivier</creator><creator>Rouve, Laure-Line</creator><creator>Coulomb, Jean-Louis</creator><creator>Guichon, Jean-Michel</creator><creator>Vassilev, Andrea</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4708-5411</orcidid><orcidid>https://orcid.org/0000-0003-2460-6237</orcidid><orcidid>https://orcid.org/0000-0003-3684-4427</orcidid><orcidid>https://orcid.org/0000-0002-4334-1855</orcidid></search><sort><creationdate>20151201</creationdate><title>A Bayesian Approach for Spherical Harmonic Expansion Identification: Application to Magnetostatic Field Created by a Power Circuitry</title><author>Pinaud, Olivier ; Chadebec, Olivier ; Rouve, Laure-Line ; Coulomb, Jean-Louis ; Guichon, Jean-Michel ; Vassilev, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-fb411e107ec2d18dd776cae098dc7dfa89d641599e7f8f1f8aa181cceabc41253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bayes theorem</topic><topic>Bayesian analysis</topic><topic>Computational modeling</topic><topic>Covariance matrices</topic><topic>Electric circuits</topic><topic>Electric power</topic><topic>Electric power generation</topic><topic>Electromagnetic compatibility</topic><topic>Engineering Sciences</topic><topic>Harmonic analysis</topic><topic>Inverse</topic><topic>inverse problem theory</topic><topic>Inverse problems</topic><topic>Magnetostatic fields</topic><topic>magnetostatics</topic><topic>Mathematical models</topic><topic>Numerical models</topic><topic>Random variables</topic><topic>random variables propagation</topic><topic>Sensors</topic><topic>Spherical harmonics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pinaud, Olivier</creatorcontrib><creatorcontrib>Chadebec, Olivier</creatorcontrib><creatorcontrib>Rouve, Laure-Line</creatorcontrib><creatorcontrib>Coulomb, Jean-Louis</creatorcontrib><creatorcontrib>Guichon, Jean-Michel</creatorcontrib><creatorcontrib>Vassilev, Andrea</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on electromagnetic compatibility</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pinaud, Olivier</au><au>Chadebec, Olivier</au><au>Rouve, Laure-Line</au><au>Coulomb, Jean-Louis</au><au>Guichon, Jean-Michel</au><au>Vassilev, Andrea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Bayesian Approach for Spherical Harmonic Expansion Identification: Application to Magnetostatic Field Created by a Power Circuitry</atitle><jtitle>IEEE transactions on electromagnetic compatibility</jtitle><stitle>TEMC</stitle><date>2015-12-01</date><risdate>2015</risdate><volume>57</volume><issue>6</issue><spage>1501</spage><epage>1509</epage><pages>1501-1509</pages><issn>0018-9375</issn><eissn>1558-187X</eissn><coden>IEMCAE</coden><abstract>This paper deals with the use of the Bayesian approach to inverse an underdetermined magnetostatic problem based on spherical harmonic expansion. Identification of the spherical harmonic coefficients is helped thanks to some a priori information. This information comes from a numerical model statistically studied to define an average-state vector and a covariance matrix. The whole approach is applied for the study of the magnetostatic field inside an electric vehicle, created by its power circuitry. It demonstrates the strength of merging a priori information and measured information in order to obtain an efficient identification of magnetic sources created by a complex set of conductors.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEMC.2015.2458353</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4708-5411</orcidid><orcidid>https://orcid.org/0000-0003-2460-6237</orcidid><orcidid>https://orcid.org/0000-0003-3684-4427</orcidid><orcidid>https://orcid.org/0000-0002-4334-1855</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9375 |
ispartof | IEEE transactions on electromagnetic compatibility, 2015-12, Vol.57 (6), p.1501-1509 |
issn | 0018-9375 1558-187X |
language | eng |
recordid | cdi_crossref_primary_10_1109_TEMC_2015_2458353 |
source | IEEE Electronic Library (IEL) |
subjects | Bayes theorem Bayesian analysis Computational modeling Covariance matrices Electric circuits Electric power Electric power generation Electromagnetic compatibility Engineering Sciences Harmonic analysis Inverse inverse problem theory Inverse problems Magnetostatic fields magnetostatics Mathematical models Numerical models Random variables random variables propagation Sensors Spherical harmonics |
title | A Bayesian Approach for Spherical Harmonic Expansion Identification: Application to Magnetostatic Field Created by a Power Circuitry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A10%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Bayesian%20Approach%20for%20Spherical%20Harmonic%20Expansion%20Identification:%20Application%20to%20Magnetostatic%20Field%20Created%20by%20a%20Power%20Circuitry&rft.jtitle=IEEE%20transactions%20on%20electromagnetic%20compatibility&rft.au=Pinaud,%20Olivier&rft.date=2015-12-01&rft.volume=57&rft.issue=6&rft.spage=1501&rft.epage=1509&rft.pages=1501-1509&rft.issn=0018-9375&rft.eissn=1558-187X&rft.coden=IEMCAE&rft_id=info:doi/10.1109/TEMC.2015.2458353&rft_dat=%3Cproquest_RIE%3E1793243429%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1750085720&rft_id=info:pmid/&rft_ieee_id=7175002&rfr_iscdi=true |