A Bayesian Approach for Spherical Harmonic Expansion Identification: Application to Magnetostatic Field Created by a Power Circuitry

This paper deals with the use of the Bayesian approach to inverse an underdetermined magnetostatic problem based on spherical harmonic expansion. Identification of the spherical harmonic coefficients is helped thanks to some a priori information. This information comes from a numerical model statist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electromagnetic compatibility 2015-12, Vol.57 (6), p.1501-1509
Hauptverfasser: Pinaud, Olivier, Chadebec, Olivier, Rouve, Laure-Line, Coulomb, Jean-Louis, Guichon, Jean-Michel, Vassilev, Andrea
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1509
container_issue 6
container_start_page 1501
container_title IEEE transactions on electromagnetic compatibility
container_volume 57
creator Pinaud, Olivier
Chadebec, Olivier
Rouve, Laure-Line
Coulomb, Jean-Louis
Guichon, Jean-Michel
Vassilev, Andrea
description This paper deals with the use of the Bayesian approach to inverse an underdetermined magnetostatic problem based on spherical harmonic expansion. Identification of the spherical harmonic coefficients is helped thanks to some a priori information. This information comes from a numerical model statistically studied to define an average-state vector and a covariance matrix. The whole approach is applied for the study of the magnetostatic field inside an electric vehicle, created by its power circuitry. It demonstrates the strength of merging a priori information and measured information in order to obtain an efficient identification of magnetic sources created by a complex set of conductors.
doi_str_mv 10.1109/TEMC.2015.2458353
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TEMC_2015_2458353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7175002</ieee_id><sourcerecordid>1793243429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-fb411e107ec2d18dd776cae098dc7dfa89d641599e7f8f1f8aa181cceabc41253</originalsourceid><addsrcrecordid>eNpdkUGP0zAQhSMEEmWXH4C4WOICh3Q9Tlw73ErUpSt1BRKLxM2aOhPqVRoHO92ld344Dq32wGn0xt8bjedl2RvgcwBeXd2tbuu54CDnopS6kMWzbAZS6hy0-vE8m3EOOq8KJV9mr2K8T7KUophlf5bsEx4pOuzZchiCR7tjrQ_s27Cj4Cx2bI1h73tn2er3gH10vmc3DfWja9PzmOTHydmdBRs9u8WfPY0-jqlj2bWjrmF1IBypYdsjQ_bVP1JgtQv24MZwvMxetNhFen2uF9n369Vdvc43Xz7f1MtNbktejHm7LQEIuCIrGtBNo9TCIvFKN1Y1LeqqWZQgq4pUq1toNSJosJZwa0sQsrjIPpzm7rAzQ3B7DEfj0Zn1cmOmHgexSCB_gMS-P7HpJr8OFEezd9FS12FP_hANqKoQZVGKKqHv_kPv_SH06SeJkpxrqQRPFJwoG3yMgdqnDYCbKUMzZWimDM05w-R5e_I4Inri1b-povgL1jyYnw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1750085720</pqid></control><display><type>article</type><title>A Bayesian Approach for Spherical Harmonic Expansion Identification: Application to Magnetostatic Field Created by a Power Circuitry</title><source>IEEE Electronic Library (IEL)</source><creator>Pinaud, Olivier ; Chadebec, Olivier ; Rouve, Laure-Line ; Coulomb, Jean-Louis ; Guichon, Jean-Michel ; Vassilev, Andrea</creator><creatorcontrib>Pinaud, Olivier ; Chadebec, Olivier ; Rouve, Laure-Line ; Coulomb, Jean-Louis ; Guichon, Jean-Michel ; Vassilev, Andrea</creatorcontrib><description>This paper deals with the use of the Bayesian approach to inverse an underdetermined magnetostatic problem based on spherical harmonic expansion. Identification of the spherical harmonic coefficients is helped thanks to some a priori information. This information comes from a numerical model statistically studied to define an average-state vector and a covariance matrix. The whole approach is applied for the study of the magnetostatic field inside an electric vehicle, created by its power circuitry. It demonstrates the strength of merging a priori information and measured information in order to obtain an efficient identification of magnetic sources created by a complex set of conductors.</description><identifier>ISSN: 0018-9375</identifier><identifier>EISSN: 1558-187X</identifier><identifier>DOI: 10.1109/TEMC.2015.2458353</identifier><identifier>CODEN: IEMCAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bayes theorem ; Bayesian analysis ; Computational modeling ; Covariance matrices ; Electric circuits ; Electric power ; Electric power generation ; Electromagnetic compatibility ; Engineering Sciences ; Harmonic analysis ; Inverse ; inverse problem theory ; Inverse problems ; Magnetostatic fields ; magnetostatics ; Mathematical models ; Numerical models ; Random variables ; random variables propagation ; Sensors ; Spherical harmonics</subject><ispartof>IEEE transactions on electromagnetic compatibility, 2015-12, Vol.57 (6), p.1501-1509</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-fb411e107ec2d18dd776cae098dc7dfa89d641599e7f8f1f8aa181cceabc41253</citedby><cites>FETCH-LOGICAL-c403t-fb411e107ec2d18dd776cae098dc7dfa89d641599e7f8f1f8aa181cceabc41253</cites><orcidid>0000-0003-4708-5411 ; 0000-0003-2460-6237 ; 0000-0003-3684-4427 ; 0000-0002-4334-1855</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7175002$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7175002$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-01261250$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Pinaud, Olivier</creatorcontrib><creatorcontrib>Chadebec, Olivier</creatorcontrib><creatorcontrib>Rouve, Laure-Line</creatorcontrib><creatorcontrib>Coulomb, Jean-Louis</creatorcontrib><creatorcontrib>Guichon, Jean-Michel</creatorcontrib><creatorcontrib>Vassilev, Andrea</creatorcontrib><title>A Bayesian Approach for Spherical Harmonic Expansion Identification: Application to Magnetostatic Field Created by a Power Circuitry</title><title>IEEE transactions on electromagnetic compatibility</title><addtitle>TEMC</addtitle><description>This paper deals with the use of the Bayesian approach to inverse an underdetermined magnetostatic problem based on spherical harmonic expansion. Identification of the spherical harmonic coefficients is helped thanks to some a priori information. This information comes from a numerical model statistically studied to define an average-state vector and a covariance matrix. The whole approach is applied for the study of the magnetostatic field inside an electric vehicle, created by its power circuitry. It demonstrates the strength of merging a priori information and measured information in order to obtain an efficient identification of magnetic sources created by a complex set of conductors.</description><subject>Bayes theorem</subject><subject>Bayesian analysis</subject><subject>Computational modeling</subject><subject>Covariance matrices</subject><subject>Electric circuits</subject><subject>Electric power</subject><subject>Electric power generation</subject><subject>Electromagnetic compatibility</subject><subject>Engineering Sciences</subject><subject>Harmonic analysis</subject><subject>Inverse</subject><subject>inverse problem theory</subject><subject>Inverse problems</subject><subject>Magnetostatic fields</subject><subject>magnetostatics</subject><subject>Mathematical models</subject><subject>Numerical models</subject><subject>Random variables</subject><subject>random variables propagation</subject><subject>Sensors</subject><subject>Spherical harmonics</subject><issn>0018-9375</issn><issn>1558-187X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkUGP0zAQhSMEEmWXH4C4WOICh3Q9Tlw73ErUpSt1BRKLxM2aOhPqVRoHO92ld344Dq32wGn0xt8bjedl2RvgcwBeXd2tbuu54CDnopS6kMWzbAZS6hy0-vE8m3EOOq8KJV9mr2K8T7KUophlf5bsEx4pOuzZchiCR7tjrQ_s27Cj4Cx2bI1h73tn2er3gH10vmc3DfWja9PzmOTHydmdBRs9u8WfPY0-jqlj2bWjrmF1IBypYdsjQ_bVP1JgtQv24MZwvMxetNhFen2uF9n369Vdvc43Xz7f1MtNbktejHm7LQEIuCIrGtBNo9TCIvFKN1Y1LeqqWZQgq4pUq1toNSJosJZwa0sQsrjIPpzm7rAzQ3B7DEfj0Zn1cmOmHgexSCB_gMS-P7HpJr8OFEezd9FS12FP_hANqKoQZVGKKqHv_kPv_SH06SeJkpxrqQRPFJwoG3yMgdqnDYCbKUMzZWimDM05w-R5e_I4Inri1b-povgL1jyYnw</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Pinaud, Olivier</creator><creator>Chadebec, Olivier</creator><creator>Rouve, Laure-Line</creator><creator>Coulomb, Jean-Louis</creator><creator>Guichon, Jean-Michel</creator><creator>Vassilev, Andrea</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4708-5411</orcidid><orcidid>https://orcid.org/0000-0003-2460-6237</orcidid><orcidid>https://orcid.org/0000-0003-3684-4427</orcidid><orcidid>https://orcid.org/0000-0002-4334-1855</orcidid></search><sort><creationdate>20151201</creationdate><title>A Bayesian Approach for Spherical Harmonic Expansion Identification: Application to Magnetostatic Field Created by a Power Circuitry</title><author>Pinaud, Olivier ; Chadebec, Olivier ; Rouve, Laure-Line ; Coulomb, Jean-Louis ; Guichon, Jean-Michel ; Vassilev, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-fb411e107ec2d18dd776cae098dc7dfa89d641599e7f8f1f8aa181cceabc41253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bayes theorem</topic><topic>Bayesian analysis</topic><topic>Computational modeling</topic><topic>Covariance matrices</topic><topic>Electric circuits</topic><topic>Electric power</topic><topic>Electric power generation</topic><topic>Electromagnetic compatibility</topic><topic>Engineering Sciences</topic><topic>Harmonic analysis</topic><topic>Inverse</topic><topic>inverse problem theory</topic><topic>Inverse problems</topic><topic>Magnetostatic fields</topic><topic>magnetostatics</topic><topic>Mathematical models</topic><topic>Numerical models</topic><topic>Random variables</topic><topic>random variables propagation</topic><topic>Sensors</topic><topic>Spherical harmonics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pinaud, Olivier</creatorcontrib><creatorcontrib>Chadebec, Olivier</creatorcontrib><creatorcontrib>Rouve, Laure-Line</creatorcontrib><creatorcontrib>Coulomb, Jean-Louis</creatorcontrib><creatorcontrib>Guichon, Jean-Michel</creatorcontrib><creatorcontrib>Vassilev, Andrea</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on electromagnetic compatibility</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pinaud, Olivier</au><au>Chadebec, Olivier</au><au>Rouve, Laure-Line</au><au>Coulomb, Jean-Louis</au><au>Guichon, Jean-Michel</au><au>Vassilev, Andrea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Bayesian Approach for Spherical Harmonic Expansion Identification: Application to Magnetostatic Field Created by a Power Circuitry</atitle><jtitle>IEEE transactions on electromagnetic compatibility</jtitle><stitle>TEMC</stitle><date>2015-12-01</date><risdate>2015</risdate><volume>57</volume><issue>6</issue><spage>1501</spage><epage>1509</epage><pages>1501-1509</pages><issn>0018-9375</issn><eissn>1558-187X</eissn><coden>IEMCAE</coden><abstract>This paper deals with the use of the Bayesian approach to inverse an underdetermined magnetostatic problem based on spherical harmonic expansion. Identification of the spherical harmonic coefficients is helped thanks to some a priori information. This information comes from a numerical model statistically studied to define an average-state vector and a covariance matrix. The whole approach is applied for the study of the magnetostatic field inside an electric vehicle, created by its power circuitry. It demonstrates the strength of merging a priori information and measured information in order to obtain an efficient identification of magnetic sources created by a complex set of conductors.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEMC.2015.2458353</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4708-5411</orcidid><orcidid>https://orcid.org/0000-0003-2460-6237</orcidid><orcidid>https://orcid.org/0000-0003-3684-4427</orcidid><orcidid>https://orcid.org/0000-0002-4334-1855</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9375
ispartof IEEE transactions on electromagnetic compatibility, 2015-12, Vol.57 (6), p.1501-1509
issn 0018-9375
1558-187X
language eng
recordid cdi_crossref_primary_10_1109_TEMC_2015_2458353
source IEEE Electronic Library (IEL)
subjects Bayes theorem
Bayesian analysis
Computational modeling
Covariance matrices
Electric circuits
Electric power
Electric power generation
Electromagnetic compatibility
Engineering Sciences
Harmonic analysis
Inverse
inverse problem theory
Inverse problems
Magnetostatic fields
magnetostatics
Mathematical models
Numerical models
Random variables
random variables propagation
Sensors
Spherical harmonics
title A Bayesian Approach for Spherical Harmonic Expansion Identification: Application to Magnetostatic Field Created by a Power Circuitry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A10%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Bayesian%20Approach%20for%20Spherical%20Harmonic%20Expansion%20Identification:%20Application%20to%20Magnetostatic%20Field%20Created%20by%20a%20Power%20Circuitry&rft.jtitle=IEEE%20transactions%20on%20electromagnetic%20compatibility&rft.au=Pinaud,%20Olivier&rft.date=2015-12-01&rft.volume=57&rft.issue=6&rft.spage=1501&rft.epage=1509&rft.pages=1501-1509&rft.issn=0018-9375&rft.eissn=1558-187X&rft.coden=IEMCAE&rft_id=info:doi/10.1109/TEMC.2015.2458353&rft_dat=%3Cproquest_RIE%3E1793243429%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1750085720&rft_id=info:pmid/&rft_ieee_id=7175002&rfr_iscdi=true