Applications of the FDTD Method to Lightning Electromagnetic Pulse and Surge Simulations
Electromagnetic computation methods (ECMs) have been widely used in analyzing lightning electromagnetic pulses (LEMPs) and lightning-caused surges in various systems. One of the advantages of ECMs, in comparison with circuit simulation methods, is that they allow a self-consistent full-wave solution...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electromagnetic compatibility 2014-12, Vol.56 (6), p.1506-1521 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1521 |
---|---|
container_issue | 6 |
container_start_page | 1506 |
container_title | IEEE transactions on electromagnetic compatibility |
container_volume | 56 |
creator | Baba, Y. Rakov, Vladimir A. |
description | Electromagnetic computation methods (ECMs) have been widely used in analyzing lightning electromagnetic pulses (LEMPs) and lightning-caused surges in various systems. One of the advantages of ECMs, in comparison with circuit simulation methods, is that they allow a self-consistent full-wave solution for both the transient current distribution in a 3-D conductor system and resultant electromagnetic fields, although they are computationally expensive. Among ECMs, the finite-difference time-domain (FDTD) method for solving Maxwell's equations has been most frequently used in LEMP and surge simulations. In this paper, we review applications of the FDTD method to LEMP and surge simulations, including 1) lightning electromagnetic fields at close and far distances, 2) lightning surges on overhead power transmission line conductors and towers, 3) lightning surges on overhead distribution and telecommunication lines, 4) lightning electromagnetic environment in power substations, 5) lightning surges in wind-turbine-generator towers, 6) lightning surges in photovoltaic (PV) arrays, 7) lightning electromagnetic environment in electric vehicles (EVs), 8) lightning electromagnetic environment in airborne vehicles, 9) lightning surges and electromagnetic environment in buildings, and 10) surges on grounding electrodes. |
doi_str_mv | 10.1109/TEMC.2014.2331323 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TEMC_2014_2331323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6847227</ieee_id><sourcerecordid>3534178091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-86138cf75e82e6a3be2b093588fb064e56406f5b94903d4eed789c31c8cbb083</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EEqXwAxCLJRaWFH_Ejj1W_QCkViC1Q7cocS6pqzQOsTPw70nVioHpdLrnfXV6EHqkZEIp0a_bxXo2YYTGE8Y55YxfoREVQkVUJbtrNCKEqkjzRNyiO-8PwxoLxkdoN23b2posWNd47Eoc9oCX8-0cryHsXYGDwytb7UNjmwovajChc8esaiBYg7_62gPOmgJv-q4CvLHHvj533aObMhuuD5c5RtvlYjt7j1afbx-z6SoyMRMhUpJyZcpEgGIgM54Dy4nmQqkyJzIGIWMiS5HrWBNexABForTh1CiT50TxMXo517ad--7Bh_RovYG6zhpwvU-pFJRrSSQb0Od_6MH1XTM8N1BcM6k0JQNFz5TpnPcdlGnb2WPW_aSUpCfV6Ul1elKdXlQPmadzxgLAHy9VnDCW8F-9pXkt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1639268910</pqid></control><display><type>article</type><title>Applications of the FDTD Method to Lightning Electromagnetic Pulse and Surge Simulations</title><source>IEEE Electronic Library (IEL)</source><creator>Baba, Y. ; Rakov, Vladimir A.</creator><creatorcontrib>Baba, Y. ; Rakov, Vladimir A.</creatorcontrib><description>Electromagnetic computation methods (ECMs) have been widely used in analyzing lightning electromagnetic pulses (LEMPs) and lightning-caused surges in various systems. One of the advantages of ECMs, in comparison with circuit simulation methods, is that they allow a self-consistent full-wave solution for both the transient current distribution in a 3-D conductor system and resultant electromagnetic fields, although they are computationally expensive. Among ECMs, the finite-difference time-domain (FDTD) method for solving Maxwell's equations has been most frequently used in LEMP and surge simulations. In this paper, we review applications of the FDTD method to LEMP and surge simulations, including 1) lightning electromagnetic fields at close and far distances, 2) lightning surges on overhead power transmission line conductors and towers, 3) lightning surges on overhead distribution and telecommunication lines, 4) lightning electromagnetic environment in power substations, 5) lightning surges in wind-turbine-generator towers, 6) lightning surges in photovoltaic (PV) arrays, 7) lightning electromagnetic environment in electric vehicles (EVs), 8) lightning electromagnetic environment in airborne vehicles, 9) lightning surges and electromagnetic environment in buildings, and 10) surges on grounding electrodes.</description><identifier>ISSN: 0018-9375</identifier><identifier>EISSN: 1558-187X</identifier><identifier>DOI: 10.1109/TEMC.2014.2331323</identifier><identifier>CODEN: IEMCAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computer simulation ; Conductors (devices) ; Electric vehicles ; Electrical equipment ; Electricity distribution ; Electromagnetic field ; Electromagnetic measurements ; FDTD method ; Finite difference methods ; Finite difference time domain method ; Impedance ; Lightning ; lightning return stroke ; Solar cells ; surge ; Surge protection ; Surges ; Time-domain analysis ; Towers ; Wires</subject><ispartof>IEEE transactions on electromagnetic compatibility, 2014-12, Vol.56 (6), p.1506-1521</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-86138cf75e82e6a3be2b093588fb064e56406f5b94903d4eed789c31c8cbb083</citedby><cites>FETCH-LOGICAL-c425t-86138cf75e82e6a3be2b093588fb064e56406f5b94903d4eed789c31c8cbb083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6847227$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6847227$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Baba, Y.</creatorcontrib><creatorcontrib>Rakov, Vladimir A.</creatorcontrib><title>Applications of the FDTD Method to Lightning Electromagnetic Pulse and Surge Simulations</title><title>IEEE transactions on electromagnetic compatibility</title><addtitle>TEMC</addtitle><description>Electromagnetic computation methods (ECMs) have been widely used in analyzing lightning electromagnetic pulses (LEMPs) and lightning-caused surges in various systems. One of the advantages of ECMs, in comparison with circuit simulation methods, is that they allow a self-consistent full-wave solution for both the transient current distribution in a 3-D conductor system and resultant electromagnetic fields, although they are computationally expensive. Among ECMs, the finite-difference time-domain (FDTD) method for solving Maxwell's equations has been most frequently used in LEMP and surge simulations. In this paper, we review applications of the FDTD method to LEMP and surge simulations, including 1) lightning electromagnetic fields at close and far distances, 2) lightning surges on overhead power transmission line conductors and towers, 3) lightning surges on overhead distribution and telecommunication lines, 4) lightning electromagnetic environment in power substations, 5) lightning surges in wind-turbine-generator towers, 6) lightning surges in photovoltaic (PV) arrays, 7) lightning electromagnetic environment in electric vehicles (EVs), 8) lightning electromagnetic environment in airborne vehicles, 9) lightning surges and electromagnetic environment in buildings, and 10) surges on grounding electrodes.</description><subject>Computer simulation</subject><subject>Conductors (devices)</subject><subject>Electric vehicles</subject><subject>Electrical equipment</subject><subject>Electricity distribution</subject><subject>Electromagnetic field</subject><subject>Electromagnetic measurements</subject><subject>FDTD method</subject><subject>Finite difference methods</subject><subject>Finite difference time domain method</subject><subject>Impedance</subject><subject>Lightning</subject><subject>lightning return stroke</subject><subject>Solar cells</subject><subject>surge</subject><subject>Surge protection</subject><subject>Surges</subject><subject>Time-domain analysis</subject><subject>Towers</subject><subject>Wires</subject><issn>0018-9375</issn><issn>1558-187X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkD1PwzAQhi0EEqXwAxCLJRaWFH_Ejj1W_QCkViC1Q7cocS6pqzQOsTPw70nVioHpdLrnfXV6EHqkZEIp0a_bxXo2YYTGE8Y55YxfoREVQkVUJbtrNCKEqkjzRNyiO-8PwxoLxkdoN23b2posWNd47Eoc9oCX8-0cryHsXYGDwytb7UNjmwovajChc8esaiBYg7_62gPOmgJv-q4CvLHHvj533aObMhuuD5c5RtvlYjt7j1afbx-z6SoyMRMhUpJyZcpEgGIgM54Dy4nmQqkyJzIGIWMiS5HrWBNexABForTh1CiT50TxMXo517ad--7Bh_RovYG6zhpwvU-pFJRrSSQb0Od_6MH1XTM8N1BcM6k0JQNFz5TpnPcdlGnb2WPW_aSUpCfV6Ul1elKdXlQPmadzxgLAHy9VnDCW8F-9pXkt</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Baba, Y.</creator><creator>Rakov, Vladimir A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20141201</creationdate><title>Applications of the FDTD Method to Lightning Electromagnetic Pulse and Surge Simulations</title><author>Baba, Y. ; Rakov, Vladimir A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-86138cf75e82e6a3be2b093588fb064e56406f5b94903d4eed789c31c8cbb083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Computer simulation</topic><topic>Conductors (devices)</topic><topic>Electric vehicles</topic><topic>Electrical equipment</topic><topic>Electricity distribution</topic><topic>Electromagnetic field</topic><topic>Electromagnetic measurements</topic><topic>FDTD method</topic><topic>Finite difference methods</topic><topic>Finite difference time domain method</topic><topic>Impedance</topic><topic>Lightning</topic><topic>lightning return stroke</topic><topic>Solar cells</topic><topic>surge</topic><topic>Surge protection</topic><topic>Surges</topic><topic>Time-domain analysis</topic><topic>Towers</topic><topic>Wires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baba, Y.</creatorcontrib><creatorcontrib>Rakov, Vladimir A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on electromagnetic compatibility</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Baba, Y.</au><au>Rakov, Vladimir A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Applications of the FDTD Method to Lightning Electromagnetic Pulse and Surge Simulations</atitle><jtitle>IEEE transactions on electromagnetic compatibility</jtitle><stitle>TEMC</stitle><date>2014-12-01</date><risdate>2014</risdate><volume>56</volume><issue>6</issue><spage>1506</spage><epage>1521</epage><pages>1506-1521</pages><issn>0018-9375</issn><eissn>1558-187X</eissn><coden>IEMCAE</coden><abstract>Electromagnetic computation methods (ECMs) have been widely used in analyzing lightning electromagnetic pulses (LEMPs) and lightning-caused surges in various systems. One of the advantages of ECMs, in comparison with circuit simulation methods, is that they allow a self-consistent full-wave solution for both the transient current distribution in a 3-D conductor system and resultant electromagnetic fields, although they are computationally expensive. Among ECMs, the finite-difference time-domain (FDTD) method for solving Maxwell's equations has been most frequently used in LEMP and surge simulations. In this paper, we review applications of the FDTD method to LEMP and surge simulations, including 1) lightning electromagnetic fields at close and far distances, 2) lightning surges on overhead power transmission line conductors and towers, 3) lightning surges on overhead distribution and telecommunication lines, 4) lightning electromagnetic environment in power substations, 5) lightning surges in wind-turbine-generator towers, 6) lightning surges in photovoltaic (PV) arrays, 7) lightning electromagnetic environment in electric vehicles (EVs), 8) lightning electromagnetic environment in airborne vehicles, 9) lightning surges and electromagnetic environment in buildings, and 10) surges on grounding electrodes.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEMC.2014.2331323</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9375 |
ispartof | IEEE transactions on electromagnetic compatibility, 2014-12, Vol.56 (6), p.1506-1521 |
issn | 0018-9375 1558-187X |
language | eng |
recordid | cdi_crossref_primary_10_1109_TEMC_2014_2331323 |
source | IEEE Electronic Library (IEL) |
subjects | Computer simulation Conductors (devices) Electric vehicles Electrical equipment Electricity distribution Electromagnetic field Electromagnetic measurements FDTD method Finite difference methods Finite difference time domain method Impedance Lightning lightning return stroke Solar cells surge Surge protection Surges Time-domain analysis Towers Wires |
title | Applications of the FDTD Method to Lightning Electromagnetic Pulse and Surge Simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T11%3A08%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Applications%20of%20the%20FDTD%20Method%20to%20Lightning%20Electromagnetic%20Pulse%20and%20Surge%20Simulations&rft.jtitle=IEEE%20transactions%20on%20electromagnetic%20compatibility&rft.au=Baba,%20Y.&rft.date=2014-12-01&rft.volume=56&rft.issue=6&rft.spage=1506&rft.epage=1521&rft.pages=1506-1521&rft.issn=0018-9375&rft.eissn=1558-187X&rft.coden=IEMCAE&rft_id=info:doi/10.1109/TEMC.2014.2331323&rft_dat=%3Cproquest_RIE%3E3534178091%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1639268910&rft_id=info:pmid/&rft_ieee_id=6847227&rfr_iscdi=true |