A Photosensitive Spiking Neuron Using a Single Band-Modulation Device With Tunable Spiking Sensitivity

Bio-inspired visual systems require a critical component to perceive optical stimuli and convert them into spiking signals. In this study, a compact photosensitive spiking neuron is demonstrated using a single band-modulation device called zero subthreshold swing and zero impact ionization FET (Z 2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2024-10, Vol.71 (10), p.5874-5880
Hauptverfasser: Chen, Yingxin, Liu, Chenyu, Tian, Tian, Xie, Hui, Cristoloveanu, Sorin, Zhou, Peng, Xu, Yong, Liu, Fanyu, Wan, Jing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5880
container_issue 10
container_start_page 5874
container_title IEEE transactions on electron devices
container_volume 71
creator Chen, Yingxin
Liu, Chenyu
Tian, Tian
Xie, Hui
Cristoloveanu, Sorin
Zhou, Peng
Xu, Yong
Liu, Fanyu
Wan, Jing
description Bio-inspired visual systems require a critical component to perceive optical stimuli and convert them into spiking signals. In this study, a compact photosensitive spiking neuron is demonstrated using a single band-modulation device called zero subthreshold swing and zero impact ionization FET (Z 2 -FET). This device is fully compatible with the standard CMOS process and features integrate-and-fire (IF) neural behavior. The firing threshold and spiking frequency of the Z 2 -FET neuron can be modulated by incident light with various intensities and wavelengths, similar to the photoresponse observed in biological neurons. TCAD simulations validate the working principle, originating from the deep depletion effect and photo-induced reduction of energy barriers. Inspired by biological neurons with adjustable spike encoding functionality, the Z 2 -FET neuron achieves controllable photoresponsive frequency when the input current, top-gate, and back-gate voltages are tuned. With its excellent scaling capability, low energy consumption, and tunable spiking sensitivity, the photosensitive Z 2 -FET neuron holds great potential in multifunctional neuromorphic applications, such as intelligent visual perception and neural computing.
doi_str_mv 10.1109/TED.2024.3452073
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TED_2024_3452073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10679775</ieee_id><sourcerecordid>3109496105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c175t-cd7ff224c08b93ae7bdd7d38b5b7f10ca405480a3071ff1c391ecd575097c8693</originalsourceid><addsrcrecordid>eNpNkM1LAzEUxIMoWKt3Dx4Cnre-bJLN5ljb-gH1A9riMWSziU2tu3WzW-h_b0oLehqGNzMPfghdExgQAvJuPhkPUkjZgDKegqAnqEc4F4nMWHaKegAkTyTN6Tm6CGEVbcZY2kNuiN-XdVsHWwXf-q3Fs43_8tUnfrVdU1d4EfZG41mUtcX3uiqTl7rs1rr18Ty2W28s_vDtEs-7Shfrv4XZcdO3u0t05vQ62Kuj9tHiYTIfPSXTt8fn0XCaGCJ4m5hSOJemzEBeSKqtKMpSlDQveCEcAaMZcJaDpiCIc8RQSawpueAghckzSfvo9rC7aeqfzoZWrequqeJLRSMlJjMCPKbgkDJNHUJjndo0_ls3O0VA7WmqSFPtaaojzVi5OVS8tfZfPBNSCE5_AaE9cRI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3109496105</pqid></control><display><type>article</type><title>A Photosensitive Spiking Neuron Using a Single Band-Modulation Device With Tunable Spiking Sensitivity</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Yingxin ; Liu, Chenyu ; Tian, Tian ; Xie, Hui ; Cristoloveanu, Sorin ; Zhou, Peng ; Xu, Yong ; Liu, Fanyu ; Wan, Jing</creator><creatorcontrib>Chen, Yingxin ; Liu, Chenyu ; Tian, Tian ; Xie, Hui ; Cristoloveanu, Sorin ; Zhou, Peng ; Xu, Yong ; Liu, Fanyu ; Wan, Jing</creatorcontrib><description>Bio-inspired visual systems require a critical component to perceive optical stimuli and convert them into spiking signals. In this study, a compact photosensitive spiking neuron is demonstrated using a single band-modulation device called zero subthreshold swing and zero impact ionization FET (Z 2 -FET). This device is fully compatible with the standard CMOS process and features integrate-and-fire (IF) neural behavior. The firing threshold and spiking frequency of the Z 2 -FET neuron can be modulated by incident light with various intensities and wavelengths, similar to the photoresponse observed in biological neurons. TCAD simulations validate the working principle, originating from the deep depletion effect and photo-induced reduction of energy barriers. Inspired by biological neurons with adjustable spike encoding functionality, the Z 2 -FET neuron achieves controllable photoresponsive frequency when the input current, top-gate, and back-gate voltages are tuned. With its excellent scaling capability, low energy consumption, and tunable spiking sensitivity, the photosensitive Z 2 -FET neuron holds great potential in multifunctional neuromorphic applications, such as intelligent visual perception and neural computing.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2024.3452073</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial vision ; Biological effects ; Controllability ; Critical components ; Energy consumption ; Firing ; fully depleted silicon-on-insulator (FD-SOI) ; Incident light ; Lighting ; Logic gates ; Luminous intensity ; Membrane potentials ; Modulation ; Neurons ; photosensitive spiking neuron ; Photosensitivity ; Retina ; Semiconductor process modeling ; Sensitivity ; single transistor neuron ; Spiking ; Visual perception ; Visual stimuli ; zero subthreshold swing and zero impact ionization FET (Z²-FET)</subject><ispartof>IEEE transactions on electron devices, 2024-10, Vol.71 (10), p.5874-5880</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c175t-cd7ff224c08b93ae7bdd7d38b5b7f10ca405480a3071ff1c391ecd575097c8693</cites><orcidid>0000-0002-3576-5586 ; 0000-0002-7301-1013 ; 0009-0005-7444-184X ; 0000-0002-6154-4971 ; 0000-0002-6339-4006 ; 0000-0001-9372-8479 ; 0000-0002-6800-234X ; 0009-0003-0306-0957 ; 0009-0000-3950-6154</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10679775$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10679775$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Yingxin</creatorcontrib><creatorcontrib>Liu, Chenyu</creatorcontrib><creatorcontrib>Tian, Tian</creatorcontrib><creatorcontrib>Xie, Hui</creatorcontrib><creatorcontrib>Cristoloveanu, Sorin</creatorcontrib><creatorcontrib>Zhou, Peng</creatorcontrib><creatorcontrib>Xu, Yong</creatorcontrib><creatorcontrib>Liu, Fanyu</creatorcontrib><creatorcontrib>Wan, Jing</creatorcontrib><title>A Photosensitive Spiking Neuron Using a Single Band-Modulation Device With Tunable Spiking Sensitivity</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>Bio-inspired visual systems require a critical component to perceive optical stimuli and convert them into spiking signals. In this study, a compact photosensitive spiking neuron is demonstrated using a single band-modulation device called zero subthreshold swing and zero impact ionization FET (Z 2 -FET). This device is fully compatible with the standard CMOS process and features integrate-and-fire (IF) neural behavior. The firing threshold and spiking frequency of the Z 2 -FET neuron can be modulated by incident light with various intensities and wavelengths, similar to the photoresponse observed in biological neurons. TCAD simulations validate the working principle, originating from the deep depletion effect and photo-induced reduction of energy barriers. Inspired by biological neurons with adjustable spike encoding functionality, the Z 2 -FET neuron achieves controllable photoresponsive frequency when the input current, top-gate, and back-gate voltages are tuned. With its excellent scaling capability, low energy consumption, and tunable spiking sensitivity, the photosensitive Z 2 -FET neuron holds great potential in multifunctional neuromorphic applications, such as intelligent visual perception and neural computing.</description><subject>Artificial vision</subject><subject>Biological effects</subject><subject>Controllability</subject><subject>Critical components</subject><subject>Energy consumption</subject><subject>Firing</subject><subject>fully depleted silicon-on-insulator (FD-SOI)</subject><subject>Incident light</subject><subject>Lighting</subject><subject>Logic gates</subject><subject>Luminous intensity</subject><subject>Membrane potentials</subject><subject>Modulation</subject><subject>Neurons</subject><subject>photosensitive spiking neuron</subject><subject>Photosensitivity</subject><subject>Retina</subject><subject>Semiconductor process modeling</subject><subject>Sensitivity</subject><subject>single transistor neuron</subject><subject>Spiking</subject><subject>Visual perception</subject><subject>Visual stimuli</subject><subject>zero subthreshold swing and zero impact ionization FET (Z²-FET)</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1LAzEUxIMoWKt3Dx4Cnre-bJLN5ljb-gH1A9riMWSziU2tu3WzW-h_b0oLehqGNzMPfghdExgQAvJuPhkPUkjZgDKegqAnqEc4F4nMWHaKegAkTyTN6Tm6CGEVbcZY2kNuiN-XdVsHWwXf-q3Fs43_8tUnfrVdU1d4EfZG41mUtcX3uiqTl7rs1rr18Ty2W28s_vDtEs-7Shfrv4XZcdO3u0t05vQ62Kuj9tHiYTIfPSXTt8fn0XCaGCJ4m5hSOJemzEBeSKqtKMpSlDQveCEcAaMZcJaDpiCIc8RQSawpueAghckzSfvo9rC7aeqfzoZWrequqeJLRSMlJjMCPKbgkDJNHUJjndo0_ls3O0VA7WmqSFPtaaojzVi5OVS8tfZfPBNSCE5_AaE9cRI</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Chen, Yingxin</creator><creator>Liu, Chenyu</creator><creator>Tian, Tian</creator><creator>Xie, Hui</creator><creator>Cristoloveanu, Sorin</creator><creator>Zhou, Peng</creator><creator>Xu, Yong</creator><creator>Liu, Fanyu</creator><creator>Wan, Jing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3576-5586</orcidid><orcidid>https://orcid.org/0000-0002-7301-1013</orcidid><orcidid>https://orcid.org/0009-0005-7444-184X</orcidid><orcidid>https://orcid.org/0000-0002-6154-4971</orcidid><orcidid>https://orcid.org/0000-0002-6339-4006</orcidid><orcidid>https://orcid.org/0000-0001-9372-8479</orcidid><orcidid>https://orcid.org/0000-0002-6800-234X</orcidid><orcidid>https://orcid.org/0009-0003-0306-0957</orcidid><orcidid>https://orcid.org/0009-0000-3950-6154</orcidid></search><sort><creationdate>20241001</creationdate><title>A Photosensitive Spiking Neuron Using a Single Band-Modulation Device With Tunable Spiking Sensitivity</title><author>Chen, Yingxin ; Liu, Chenyu ; Tian, Tian ; Xie, Hui ; Cristoloveanu, Sorin ; Zhou, Peng ; Xu, Yong ; Liu, Fanyu ; Wan, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c175t-cd7ff224c08b93ae7bdd7d38b5b7f10ca405480a3071ff1c391ecd575097c8693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial vision</topic><topic>Biological effects</topic><topic>Controllability</topic><topic>Critical components</topic><topic>Energy consumption</topic><topic>Firing</topic><topic>fully depleted silicon-on-insulator (FD-SOI)</topic><topic>Incident light</topic><topic>Lighting</topic><topic>Logic gates</topic><topic>Luminous intensity</topic><topic>Membrane potentials</topic><topic>Modulation</topic><topic>Neurons</topic><topic>photosensitive spiking neuron</topic><topic>Photosensitivity</topic><topic>Retina</topic><topic>Semiconductor process modeling</topic><topic>Sensitivity</topic><topic>single transistor neuron</topic><topic>Spiking</topic><topic>Visual perception</topic><topic>Visual stimuli</topic><topic>zero subthreshold swing and zero impact ionization FET (Z²-FET)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yingxin</creatorcontrib><creatorcontrib>Liu, Chenyu</creatorcontrib><creatorcontrib>Tian, Tian</creatorcontrib><creatorcontrib>Xie, Hui</creatorcontrib><creatorcontrib>Cristoloveanu, Sorin</creatorcontrib><creatorcontrib>Zhou, Peng</creatorcontrib><creatorcontrib>Xu, Yong</creatorcontrib><creatorcontrib>Liu, Fanyu</creatorcontrib><creatorcontrib>Wan, Jing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Yingxin</au><au>Liu, Chenyu</au><au>Tian, Tian</au><au>Xie, Hui</au><au>Cristoloveanu, Sorin</au><au>Zhou, Peng</au><au>Xu, Yong</au><au>Liu, Fanyu</au><au>Wan, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Photosensitive Spiking Neuron Using a Single Band-Modulation Device With Tunable Spiking Sensitivity</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>71</volume><issue>10</issue><spage>5874</spage><epage>5880</epage><pages>5874-5880</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>Bio-inspired visual systems require a critical component to perceive optical stimuli and convert them into spiking signals. In this study, a compact photosensitive spiking neuron is demonstrated using a single band-modulation device called zero subthreshold swing and zero impact ionization FET (Z 2 -FET). This device is fully compatible with the standard CMOS process and features integrate-and-fire (IF) neural behavior. The firing threshold and spiking frequency of the Z 2 -FET neuron can be modulated by incident light with various intensities and wavelengths, similar to the photoresponse observed in biological neurons. TCAD simulations validate the working principle, originating from the deep depletion effect and photo-induced reduction of energy barriers. Inspired by biological neurons with adjustable spike encoding functionality, the Z 2 -FET neuron achieves controllable photoresponsive frequency when the input current, top-gate, and back-gate voltages are tuned. With its excellent scaling capability, low energy consumption, and tunable spiking sensitivity, the photosensitive Z 2 -FET neuron holds great potential in multifunctional neuromorphic applications, such as intelligent visual perception and neural computing.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2024.3452073</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3576-5586</orcidid><orcidid>https://orcid.org/0000-0002-7301-1013</orcidid><orcidid>https://orcid.org/0009-0005-7444-184X</orcidid><orcidid>https://orcid.org/0000-0002-6154-4971</orcidid><orcidid>https://orcid.org/0000-0002-6339-4006</orcidid><orcidid>https://orcid.org/0000-0001-9372-8479</orcidid><orcidid>https://orcid.org/0000-0002-6800-234X</orcidid><orcidid>https://orcid.org/0009-0003-0306-0957</orcidid><orcidid>https://orcid.org/0009-0000-3950-6154</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2024-10, Vol.71 (10), p.5874-5880
issn 0018-9383
1557-9646
language eng
recordid cdi_crossref_primary_10_1109_TED_2024_3452073
source IEEE Electronic Library (IEL)
subjects Artificial vision
Biological effects
Controllability
Critical components
Energy consumption
Firing
fully depleted silicon-on-insulator (FD-SOI)
Incident light
Lighting
Logic gates
Luminous intensity
Membrane potentials
Modulation
Neurons
photosensitive spiking neuron
Photosensitivity
Retina
Semiconductor process modeling
Sensitivity
single transistor neuron
Spiking
Visual perception
Visual stimuli
zero subthreshold swing and zero impact ionization FET (Z²-FET)
title A Photosensitive Spiking Neuron Using a Single Band-Modulation Device With Tunable Spiking Sensitivity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A18%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Photosensitive%20Spiking%20Neuron%20Using%20a%20Single%20Band-Modulation%20Device%20With%20Tunable%20Spiking%20Sensitivity&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Chen,%20Yingxin&rft.date=2024-10-01&rft.volume=71&rft.issue=10&rft.spage=5874&rft.epage=5880&rft.pages=5874-5880&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2024.3452073&rft_dat=%3Cproquest_RIE%3E3109496105%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3109496105&rft_id=info:pmid/&rft_ieee_id=10679775&rfr_iscdi=true