A Photosensitive Spiking Neuron Using a Single Band-Modulation Device With Tunable Spiking Sensitivity
Bio-inspired visual systems require a critical component to perceive optical stimuli and convert them into spiking signals. In this study, a compact photosensitive spiking neuron is demonstrated using a single band-modulation device called zero subthreshold swing and zero impact ionization FET (Z 2...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2024-10, Vol.71 (10), p.5874-5880 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5880 |
---|---|
container_issue | 10 |
container_start_page | 5874 |
container_title | IEEE transactions on electron devices |
container_volume | 71 |
creator | Chen, Yingxin Liu, Chenyu Tian, Tian Xie, Hui Cristoloveanu, Sorin Zhou, Peng Xu, Yong Liu, Fanyu Wan, Jing |
description | Bio-inspired visual systems require a critical component to perceive optical stimuli and convert them into spiking signals. In this study, a compact photosensitive spiking neuron is demonstrated using a single band-modulation device called zero subthreshold swing and zero impact ionization FET (Z 2 -FET). This device is fully compatible with the standard CMOS process and features integrate-and-fire (IF) neural behavior. The firing threshold and spiking frequency of the Z 2 -FET neuron can be modulated by incident light with various intensities and wavelengths, similar to the photoresponse observed in biological neurons. TCAD simulations validate the working principle, originating from the deep depletion effect and photo-induced reduction of energy barriers. Inspired by biological neurons with adjustable spike encoding functionality, the Z 2 -FET neuron achieves controllable photoresponsive frequency when the input current, top-gate, and back-gate voltages are tuned. With its excellent scaling capability, low energy consumption, and tunable spiking sensitivity, the photosensitive Z 2 -FET neuron holds great potential in multifunctional neuromorphic applications, such as intelligent visual perception and neural computing. |
doi_str_mv | 10.1109/TED.2024.3452073 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TED_2024_3452073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10679775</ieee_id><sourcerecordid>3109496105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c175t-cd7ff224c08b93ae7bdd7d38b5b7f10ca405480a3071ff1c391ecd575097c8693</originalsourceid><addsrcrecordid>eNpNkM1LAzEUxIMoWKt3Dx4Cnre-bJLN5ljb-gH1A9riMWSziU2tu3WzW-h_b0oLehqGNzMPfghdExgQAvJuPhkPUkjZgDKegqAnqEc4F4nMWHaKegAkTyTN6Tm6CGEVbcZY2kNuiN-XdVsHWwXf-q3Fs43_8tUnfrVdU1d4EfZG41mUtcX3uiqTl7rs1rr18Ty2W28s_vDtEs-7Shfrv4XZcdO3u0t05vQ62Kuj9tHiYTIfPSXTt8fn0XCaGCJ4m5hSOJemzEBeSKqtKMpSlDQveCEcAaMZcJaDpiCIc8RQSawpueAghckzSfvo9rC7aeqfzoZWrequqeJLRSMlJjMCPKbgkDJNHUJjndo0_ls3O0VA7WmqSFPtaaojzVi5OVS8tfZfPBNSCE5_AaE9cRI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3109496105</pqid></control><display><type>article</type><title>A Photosensitive Spiking Neuron Using a Single Band-Modulation Device With Tunable Spiking Sensitivity</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Yingxin ; Liu, Chenyu ; Tian, Tian ; Xie, Hui ; Cristoloveanu, Sorin ; Zhou, Peng ; Xu, Yong ; Liu, Fanyu ; Wan, Jing</creator><creatorcontrib>Chen, Yingxin ; Liu, Chenyu ; Tian, Tian ; Xie, Hui ; Cristoloveanu, Sorin ; Zhou, Peng ; Xu, Yong ; Liu, Fanyu ; Wan, Jing</creatorcontrib><description>Bio-inspired visual systems require a critical component to perceive optical stimuli and convert them into spiking signals. In this study, a compact photosensitive spiking neuron is demonstrated using a single band-modulation device called zero subthreshold swing and zero impact ionization FET (Z 2 -FET). This device is fully compatible with the standard CMOS process and features integrate-and-fire (IF) neural behavior. The firing threshold and spiking frequency of the Z 2 -FET neuron can be modulated by incident light with various intensities and wavelengths, similar to the photoresponse observed in biological neurons. TCAD simulations validate the working principle, originating from the deep depletion effect and photo-induced reduction of energy barriers. Inspired by biological neurons with adjustable spike encoding functionality, the Z 2 -FET neuron achieves controllable photoresponsive frequency when the input current, top-gate, and back-gate voltages are tuned. With its excellent scaling capability, low energy consumption, and tunable spiking sensitivity, the photosensitive Z 2 -FET neuron holds great potential in multifunctional neuromorphic applications, such as intelligent visual perception and neural computing.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2024.3452073</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial vision ; Biological effects ; Controllability ; Critical components ; Energy consumption ; Firing ; fully depleted silicon-on-insulator (FD-SOI) ; Incident light ; Lighting ; Logic gates ; Luminous intensity ; Membrane potentials ; Modulation ; Neurons ; photosensitive spiking neuron ; Photosensitivity ; Retina ; Semiconductor process modeling ; Sensitivity ; single transistor neuron ; Spiking ; Visual perception ; Visual stimuli ; zero subthreshold swing and zero impact ionization FET (Z²-FET)</subject><ispartof>IEEE transactions on electron devices, 2024-10, Vol.71 (10), p.5874-5880</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c175t-cd7ff224c08b93ae7bdd7d38b5b7f10ca405480a3071ff1c391ecd575097c8693</cites><orcidid>0000-0002-3576-5586 ; 0000-0002-7301-1013 ; 0009-0005-7444-184X ; 0000-0002-6154-4971 ; 0000-0002-6339-4006 ; 0000-0001-9372-8479 ; 0000-0002-6800-234X ; 0009-0003-0306-0957 ; 0009-0000-3950-6154</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10679775$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10679775$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Yingxin</creatorcontrib><creatorcontrib>Liu, Chenyu</creatorcontrib><creatorcontrib>Tian, Tian</creatorcontrib><creatorcontrib>Xie, Hui</creatorcontrib><creatorcontrib>Cristoloveanu, Sorin</creatorcontrib><creatorcontrib>Zhou, Peng</creatorcontrib><creatorcontrib>Xu, Yong</creatorcontrib><creatorcontrib>Liu, Fanyu</creatorcontrib><creatorcontrib>Wan, Jing</creatorcontrib><title>A Photosensitive Spiking Neuron Using a Single Band-Modulation Device With Tunable Spiking Sensitivity</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>Bio-inspired visual systems require a critical component to perceive optical stimuli and convert them into spiking signals. In this study, a compact photosensitive spiking neuron is demonstrated using a single band-modulation device called zero subthreshold swing and zero impact ionization FET (Z 2 -FET). This device is fully compatible with the standard CMOS process and features integrate-and-fire (IF) neural behavior. The firing threshold and spiking frequency of the Z 2 -FET neuron can be modulated by incident light with various intensities and wavelengths, similar to the photoresponse observed in biological neurons. TCAD simulations validate the working principle, originating from the deep depletion effect and photo-induced reduction of energy barriers. Inspired by biological neurons with adjustable spike encoding functionality, the Z 2 -FET neuron achieves controllable photoresponsive frequency when the input current, top-gate, and back-gate voltages are tuned. With its excellent scaling capability, low energy consumption, and tunable spiking sensitivity, the photosensitive Z 2 -FET neuron holds great potential in multifunctional neuromorphic applications, such as intelligent visual perception and neural computing.</description><subject>Artificial vision</subject><subject>Biological effects</subject><subject>Controllability</subject><subject>Critical components</subject><subject>Energy consumption</subject><subject>Firing</subject><subject>fully depleted silicon-on-insulator (FD-SOI)</subject><subject>Incident light</subject><subject>Lighting</subject><subject>Logic gates</subject><subject>Luminous intensity</subject><subject>Membrane potentials</subject><subject>Modulation</subject><subject>Neurons</subject><subject>photosensitive spiking neuron</subject><subject>Photosensitivity</subject><subject>Retina</subject><subject>Semiconductor process modeling</subject><subject>Sensitivity</subject><subject>single transistor neuron</subject><subject>Spiking</subject><subject>Visual perception</subject><subject>Visual stimuli</subject><subject>zero subthreshold swing and zero impact ionization FET (Z²-FET)</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1LAzEUxIMoWKt3Dx4Cnre-bJLN5ljb-gH1A9riMWSziU2tu3WzW-h_b0oLehqGNzMPfghdExgQAvJuPhkPUkjZgDKegqAnqEc4F4nMWHaKegAkTyTN6Tm6CGEVbcZY2kNuiN-XdVsHWwXf-q3Fs43_8tUnfrVdU1d4EfZG41mUtcX3uiqTl7rs1rr18Ty2W28s_vDtEs-7Shfrv4XZcdO3u0t05vQ62Kuj9tHiYTIfPSXTt8fn0XCaGCJ4m5hSOJemzEBeSKqtKMpSlDQveCEcAaMZcJaDpiCIc8RQSawpueAghckzSfvo9rC7aeqfzoZWrequqeJLRSMlJjMCPKbgkDJNHUJjndo0_ls3O0VA7WmqSFPtaaojzVi5OVS8tfZfPBNSCE5_AaE9cRI</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Chen, Yingxin</creator><creator>Liu, Chenyu</creator><creator>Tian, Tian</creator><creator>Xie, Hui</creator><creator>Cristoloveanu, Sorin</creator><creator>Zhou, Peng</creator><creator>Xu, Yong</creator><creator>Liu, Fanyu</creator><creator>Wan, Jing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3576-5586</orcidid><orcidid>https://orcid.org/0000-0002-7301-1013</orcidid><orcidid>https://orcid.org/0009-0005-7444-184X</orcidid><orcidid>https://orcid.org/0000-0002-6154-4971</orcidid><orcidid>https://orcid.org/0000-0002-6339-4006</orcidid><orcidid>https://orcid.org/0000-0001-9372-8479</orcidid><orcidid>https://orcid.org/0000-0002-6800-234X</orcidid><orcidid>https://orcid.org/0009-0003-0306-0957</orcidid><orcidid>https://orcid.org/0009-0000-3950-6154</orcidid></search><sort><creationdate>20241001</creationdate><title>A Photosensitive Spiking Neuron Using a Single Band-Modulation Device With Tunable Spiking Sensitivity</title><author>Chen, Yingxin ; Liu, Chenyu ; Tian, Tian ; Xie, Hui ; Cristoloveanu, Sorin ; Zhou, Peng ; Xu, Yong ; Liu, Fanyu ; Wan, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c175t-cd7ff224c08b93ae7bdd7d38b5b7f10ca405480a3071ff1c391ecd575097c8693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial vision</topic><topic>Biological effects</topic><topic>Controllability</topic><topic>Critical components</topic><topic>Energy consumption</topic><topic>Firing</topic><topic>fully depleted silicon-on-insulator (FD-SOI)</topic><topic>Incident light</topic><topic>Lighting</topic><topic>Logic gates</topic><topic>Luminous intensity</topic><topic>Membrane potentials</topic><topic>Modulation</topic><topic>Neurons</topic><topic>photosensitive spiking neuron</topic><topic>Photosensitivity</topic><topic>Retina</topic><topic>Semiconductor process modeling</topic><topic>Sensitivity</topic><topic>single transistor neuron</topic><topic>Spiking</topic><topic>Visual perception</topic><topic>Visual stimuli</topic><topic>zero subthreshold swing and zero impact ionization FET (Z²-FET)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yingxin</creatorcontrib><creatorcontrib>Liu, Chenyu</creatorcontrib><creatorcontrib>Tian, Tian</creatorcontrib><creatorcontrib>Xie, Hui</creatorcontrib><creatorcontrib>Cristoloveanu, Sorin</creatorcontrib><creatorcontrib>Zhou, Peng</creatorcontrib><creatorcontrib>Xu, Yong</creatorcontrib><creatorcontrib>Liu, Fanyu</creatorcontrib><creatorcontrib>Wan, Jing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Yingxin</au><au>Liu, Chenyu</au><au>Tian, Tian</au><au>Xie, Hui</au><au>Cristoloveanu, Sorin</au><au>Zhou, Peng</au><au>Xu, Yong</au><au>Liu, Fanyu</au><au>Wan, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Photosensitive Spiking Neuron Using a Single Band-Modulation Device With Tunable Spiking Sensitivity</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>71</volume><issue>10</issue><spage>5874</spage><epage>5880</epage><pages>5874-5880</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>Bio-inspired visual systems require a critical component to perceive optical stimuli and convert them into spiking signals. In this study, a compact photosensitive spiking neuron is demonstrated using a single band-modulation device called zero subthreshold swing and zero impact ionization FET (Z 2 -FET). This device is fully compatible with the standard CMOS process and features integrate-and-fire (IF) neural behavior. The firing threshold and spiking frequency of the Z 2 -FET neuron can be modulated by incident light with various intensities and wavelengths, similar to the photoresponse observed in biological neurons. TCAD simulations validate the working principle, originating from the deep depletion effect and photo-induced reduction of energy barriers. Inspired by biological neurons with adjustable spike encoding functionality, the Z 2 -FET neuron achieves controllable photoresponsive frequency when the input current, top-gate, and back-gate voltages are tuned. With its excellent scaling capability, low energy consumption, and tunable spiking sensitivity, the photosensitive Z 2 -FET neuron holds great potential in multifunctional neuromorphic applications, such as intelligent visual perception and neural computing.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2024.3452073</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3576-5586</orcidid><orcidid>https://orcid.org/0000-0002-7301-1013</orcidid><orcidid>https://orcid.org/0009-0005-7444-184X</orcidid><orcidid>https://orcid.org/0000-0002-6154-4971</orcidid><orcidid>https://orcid.org/0000-0002-6339-4006</orcidid><orcidid>https://orcid.org/0000-0001-9372-8479</orcidid><orcidid>https://orcid.org/0000-0002-6800-234X</orcidid><orcidid>https://orcid.org/0009-0003-0306-0957</orcidid><orcidid>https://orcid.org/0009-0000-3950-6154</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2024-10, Vol.71 (10), p.5874-5880 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TED_2024_3452073 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial vision Biological effects Controllability Critical components Energy consumption Firing fully depleted silicon-on-insulator (FD-SOI) Incident light Lighting Logic gates Luminous intensity Membrane potentials Modulation Neurons photosensitive spiking neuron Photosensitivity Retina Semiconductor process modeling Sensitivity single transistor neuron Spiking Visual perception Visual stimuli zero subthreshold swing and zero impact ionization FET (Z²-FET) |
title | A Photosensitive Spiking Neuron Using a Single Band-Modulation Device With Tunable Spiking Sensitivity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A18%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Photosensitive%20Spiking%20Neuron%20Using%20a%20Single%20Band-Modulation%20Device%20With%20Tunable%20Spiking%20Sensitivity&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Chen,%20Yingxin&rft.date=2024-10-01&rft.volume=71&rft.issue=10&rft.spage=5874&rft.epage=5880&rft.pages=5874-5880&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2024.3452073&rft_dat=%3Cproquest_RIE%3E3109496105%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3109496105&rft_id=info:pmid/&rft_ieee_id=10679775&rfr_iscdi=true |