Study on Efficiency-Enhancing Mechanism for SB TWT by Evenly Distributing SWS Impedance
In this article, we propose a novel approach to enhance beam-wave interaction intensity in sheet beam (SB) traveling-wave tubes (TWTs). By reshaping previously reported nonquasi-2-D slow wave structure (NQSWS) from a cosine tunnel to an undulate-roofed tunnel, the interaction impedance distribution...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2024-10, Vol.71 (10), p.6388-6394 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6394 |
---|---|
container_issue | 10 |
container_start_page | 6388 |
container_title | IEEE transactions on electron devices |
container_volume | 71 |
creator | Zhang, Jian Cai, Jinchi Xu, Jin He, Jun Yin, Pengcheng Yin, Hairong Yue, Lingna Xu, Yong Luo, Jinjing Wu, Gangxiong Zhao, Guoqing Wu, Zhenhua Wang, Wenxiang Wang, Hailong Wei, Yanyu |
description | In this article, we propose a novel approach to enhance beam-wave interaction intensity in sheet beam (SB) traveling-wave tubes (TWTs). By reshaping previously reported nonquasi-2-D slow wave structure (NQSWS) from a cosine tunnel to an undulate-roofed tunnel, the interaction impedance distribution of the improved NQSWS is more uniform than that of the original NQSWS under the same tunnel area and average interaction impedance. Surprisingly, this evolution indeed leads to a significant boost in the TWT's output power and efficiency. Through PIC simulations under a voltage of 23.7 kV and current of 250 mA, the improved NQSWS TWT achieves a maximum average output power of 328 W and a 3-dB power bandwidth of 42 GHz. These results represent improvements of 35.5% in conversion efficiency and 16.7% in bandwidth compared to the original NQSWS. Furthermore, the improved NQSWS TWT has a lower beam expansion rate (BER) (about 50% reduction) and better beam transmission performance under equivalent magnetic field amplitude compared to the original NQSWS TWT, benefiting from more evenly distributed beam edge potentials. This efficiency-enhancing mechanism via pursuing better field uniformity could also be applied to other SB vacuum electronic devices (VEDs) to boost their performance, especially in millimeter-wave and terahertz region. |
doi_str_mv | 10.1109/TED.2024.3449250 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TED_2024_3449250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10659239</ieee_id><sourcerecordid>3109496437</sourcerecordid><originalsourceid>FETCH-LOGICAL-c175t-42d6fec0386bb34cf1b0e0a5b3129ba11088dbea59d71bf8352f3880c2a74ff33</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EEqWwMzBYYk7xZ2KPUAJUKmJIUUcrdmxw1SbFTpDy73HVDkx3Jz3vne4B4BajGcZIPqzK5xlBhM0oY5JwdAYmmPMikznLz8EEISwySQW9BFcxbtKYM0YmYF31QzPCroWlc95425oxK9vvujW-_YLv1qTWxx10XYDVE1ytV1CPsPy17XaEzz72weuhP7DVuoKL3d42KWuvwYWrt9HenOoUfL6Uq_lbtvx4Xcwfl5nBBe8zRprcWYOoyLWmzDiskUU11xQTqev0mRCNtjWXTYG1E5QTR4VAhtQFc47SKbg_7t2H7mewsVebbghtOqlo0sLS-7RIFDpSJnQxBuvUPvhdHUaFkTroU0mfOuhTJ30pcneMeGvtPzznklBJ_wAayWqv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3109496437</pqid></control><display><type>article</type><title>Study on Efficiency-Enhancing Mechanism for SB TWT by Evenly Distributing SWS Impedance</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Jian ; Cai, Jinchi ; Xu, Jin ; He, Jun ; Yin, Pengcheng ; Yin, Hairong ; Yue, Lingna ; Xu, Yong ; Luo, Jinjing ; Wu, Gangxiong ; Zhao, Guoqing ; Wu, Zhenhua ; Wang, Wenxiang ; Wang, Hailong ; Wei, Yanyu</creator><creatorcontrib>Zhang, Jian ; Cai, Jinchi ; Xu, Jin ; He, Jun ; Yin, Pengcheng ; Yin, Hairong ; Yue, Lingna ; Xu, Yong ; Luo, Jinjing ; Wu, Gangxiong ; Zhao, Guoqing ; Wu, Zhenhua ; Wang, Wenxiang ; Wang, Hailong ; Wei, Yanyu</creatorcontrib><description>In this article, we propose a novel approach to enhance beam-wave interaction intensity in sheet beam (SB) traveling-wave tubes (TWTs). By reshaping previously reported nonquasi-2-D slow wave structure (NQSWS) from a cosine tunnel to an undulate-roofed tunnel, the interaction impedance distribution of the improved NQSWS is more uniform than that of the original NQSWS under the same tunnel area and average interaction impedance. Surprisingly, this evolution indeed leads to a significant boost in the TWT's output power and efficiency. Through PIC simulations under a voltage of 23.7 kV and current of 250 mA, the improved NQSWS TWT achieves a maximum average output power of 328 W and a 3-dB power bandwidth of 42 GHz. These results represent improvements of 35.5% in conversion efficiency and 16.7% in bandwidth compared to the original NQSWS. Furthermore, the improved NQSWS TWT has a lower beam expansion rate (BER) (about 50% reduction) and better beam transmission performance under equivalent magnetic field amplitude compared to the original NQSWS TWT, benefiting from more evenly distributed beam edge potentials. This efficiency-enhancing mechanism via pursuing better field uniformity could also be applied to other SB vacuum electronic devices (VEDs) to boost their performance, especially in millimeter-wave and terahertz region.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2024.3449250</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bandwidth ; Bandwidths ; Dispersion ; Efficiency ; Electric potential ; Electrons ; Energy conversion efficiency ; Impedance ; Kurtosis ; Millimeter waves ; Optimization ; Power generation ; Sheet electron beam ; slow wave structure (SWS) ; terahertz ; Traveling wave tubes ; Traveling waves ; traveling-wave tube (TWT) ; Wave interaction</subject><ispartof>IEEE transactions on electron devices, 2024-10, Vol.71 (10), p.6388-6394</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c175t-42d6fec0386bb34cf1b0e0a5b3129ba11088dbea59d71bf8352f3880c2a74ff33</cites><orcidid>0000-0001-5779-4225 ; 0000-0002-9580-4823 ; 0000-0002-3423-8426 ; 0000-0003-2938-6237 ; 0000-0002-0737-027X ; 0000-0003-3996-6729 ; 0000-0002-5712-4552 ; 0000-0001-6877-9768 ; 0000-0001-7853-1790 ; 0000-0001-9328-0053 ; 0000-0002-8952-960X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10659239$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27902,27903,54735</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10659239$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Cai, Jinchi</creatorcontrib><creatorcontrib>Xu, Jin</creatorcontrib><creatorcontrib>He, Jun</creatorcontrib><creatorcontrib>Yin, Pengcheng</creatorcontrib><creatorcontrib>Yin, Hairong</creatorcontrib><creatorcontrib>Yue, Lingna</creatorcontrib><creatorcontrib>Xu, Yong</creatorcontrib><creatorcontrib>Luo, Jinjing</creatorcontrib><creatorcontrib>Wu, Gangxiong</creatorcontrib><creatorcontrib>Zhao, Guoqing</creatorcontrib><creatorcontrib>Wu, Zhenhua</creatorcontrib><creatorcontrib>Wang, Wenxiang</creatorcontrib><creatorcontrib>Wang, Hailong</creatorcontrib><creatorcontrib>Wei, Yanyu</creatorcontrib><title>Study on Efficiency-Enhancing Mechanism for SB TWT by Evenly Distributing SWS Impedance</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>In this article, we propose a novel approach to enhance beam-wave interaction intensity in sheet beam (SB) traveling-wave tubes (TWTs). By reshaping previously reported nonquasi-2-D slow wave structure (NQSWS) from a cosine tunnel to an undulate-roofed tunnel, the interaction impedance distribution of the improved NQSWS is more uniform than that of the original NQSWS under the same tunnel area and average interaction impedance. Surprisingly, this evolution indeed leads to a significant boost in the TWT's output power and efficiency. Through PIC simulations under a voltage of 23.7 kV and current of 250 mA, the improved NQSWS TWT achieves a maximum average output power of 328 W and a 3-dB power bandwidth of 42 GHz. These results represent improvements of 35.5% in conversion efficiency and 16.7% in bandwidth compared to the original NQSWS. Furthermore, the improved NQSWS TWT has a lower beam expansion rate (BER) (about 50% reduction) and better beam transmission performance under equivalent magnetic field amplitude compared to the original NQSWS TWT, benefiting from more evenly distributed beam edge potentials. This efficiency-enhancing mechanism via pursuing better field uniformity could also be applied to other SB vacuum electronic devices (VEDs) to boost their performance, especially in millimeter-wave and terahertz region.</description><subject>Bandwidth</subject><subject>Bandwidths</subject><subject>Dispersion</subject><subject>Efficiency</subject><subject>Electric potential</subject><subject>Electrons</subject><subject>Energy conversion efficiency</subject><subject>Impedance</subject><subject>Kurtosis</subject><subject>Millimeter waves</subject><subject>Optimization</subject><subject>Power generation</subject><subject>Sheet electron beam</subject><subject>slow wave structure (SWS)</subject><subject>terahertz</subject><subject>Traveling wave tubes</subject><subject>Traveling waves</subject><subject>traveling-wave tube (TWT)</subject><subject>Wave interaction</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAQhi0EEqWwMzBYYk7xZ2KPUAJUKmJIUUcrdmxw1SbFTpDy73HVDkx3Jz3vne4B4BajGcZIPqzK5xlBhM0oY5JwdAYmmPMikznLz8EEISwySQW9BFcxbtKYM0YmYF31QzPCroWlc95425oxK9vvujW-_YLv1qTWxx10XYDVE1ytV1CPsPy17XaEzz72weuhP7DVuoKL3d42KWuvwYWrt9HenOoUfL6Uq_lbtvx4Xcwfl5nBBe8zRprcWYOoyLWmzDiskUU11xQTqev0mRCNtjWXTYG1E5QTR4VAhtQFc47SKbg_7t2H7mewsVebbghtOqlo0sLS-7RIFDpSJnQxBuvUPvhdHUaFkTroU0mfOuhTJ30pcneMeGvtPzznklBJ_wAayWqv</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Zhang, Jian</creator><creator>Cai, Jinchi</creator><creator>Xu, Jin</creator><creator>He, Jun</creator><creator>Yin, Pengcheng</creator><creator>Yin, Hairong</creator><creator>Yue, Lingna</creator><creator>Xu, Yong</creator><creator>Luo, Jinjing</creator><creator>Wu, Gangxiong</creator><creator>Zhao, Guoqing</creator><creator>Wu, Zhenhua</creator><creator>Wang, Wenxiang</creator><creator>Wang, Hailong</creator><creator>Wei, Yanyu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5779-4225</orcidid><orcidid>https://orcid.org/0000-0002-9580-4823</orcidid><orcidid>https://orcid.org/0000-0002-3423-8426</orcidid><orcidid>https://orcid.org/0000-0003-2938-6237</orcidid><orcidid>https://orcid.org/0000-0002-0737-027X</orcidid><orcidid>https://orcid.org/0000-0003-3996-6729</orcidid><orcidid>https://orcid.org/0000-0002-5712-4552</orcidid><orcidid>https://orcid.org/0000-0001-6877-9768</orcidid><orcidid>https://orcid.org/0000-0001-7853-1790</orcidid><orcidid>https://orcid.org/0000-0001-9328-0053</orcidid><orcidid>https://orcid.org/0000-0002-8952-960X</orcidid></search><sort><creationdate>20241001</creationdate><title>Study on Efficiency-Enhancing Mechanism for SB TWT by Evenly Distributing SWS Impedance</title><author>Zhang, Jian ; Cai, Jinchi ; Xu, Jin ; He, Jun ; Yin, Pengcheng ; Yin, Hairong ; Yue, Lingna ; Xu, Yong ; Luo, Jinjing ; Wu, Gangxiong ; Zhao, Guoqing ; Wu, Zhenhua ; Wang, Wenxiang ; Wang, Hailong ; Wei, Yanyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c175t-42d6fec0386bb34cf1b0e0a5b3129ba11088dbea59d71bf8352f3880c2a74ff33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bandwidth</topic><topic>Bandwidths</topic><topic>Dispersion</topic><topic>Efficiency</topic><topic>Electric potential</topic><topic>Electrons</topic><topic>Energy conversion efficiency</topic><topic>Impedance</topic><topic>Kurtosis</topic><topic>Millimeter waves</topic><topic>Optimization</topic><topic>Power generation</topic><topic>Sheet electron beam</topic><topic>slow wave structure (SWS)</topic><topic>terahertz</topic><topic>Traveling wave tubes</topic><topic>Traveling waves</topic><topic>traveling-wave tube (TWT)</topic><topic>Wave interaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Cai, Jinchi</creatorcontrib><creatorcontrib>Xu, Jin</creatorcontrib><creatorcontrib>He, Jun</creatorcontrib><creatorcontrib>Yin, Pengcheng</creatorcontrib><creatorcontrib>Yin, Hairong</creatorcontrib><creatorcontrib>Yue, Lingna</creatorcontrib><creatorcontrib>Xu, Yong</creatorcontrib><creatorcontrib>Luo, Jinjing</creatorcontrib><creatorcontrib>Wu, Gangxiong</creatorcontrib><creatorcontrib>Zhao, Guoqing</creatorcontrib><creatorcontrib>Wu, Zhenhua</creatorcontrib><creatorcontrib>Wang, Wenxiang</creatorcontrib><creatorcontrib>Wang, Hailong</creatorcontrib><creatorcontrib>Wei, Yanyu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Jian</au><au>Cai, Jinchi</au><au>Xu, Jin</au><au>He, Jun</au><au>Yin, Pengcheng</au><au>Yin, Hairong</au><au>Yue, Lingna</au><au>Xu, Yong</au><au>Luo, Jinjing</au><au>Wu, Gangxiong</au><au>Zhao, Guoqing</au><au>Wu, Zhenhua</au><au>Wang, Wenxiang</au><au>Wang, Hailong</au><au>Wei, Yanyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study on Efficiency-Enhancing Mechanism for SB TWT by Evenly Distributing SWS Impedance</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>71</volume><issue>10</issue><spage>6388</spage><epage>6394</epage><pages>6388-6394</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>In this article, we propose a novel approach to enhance beam-wave interaction intensity in sheet beam (SB) traveling-wave tubes (TWTs). By reshaping previously reported nonquasi-2-D slow wave structure (NQSWS) from a cosine tunnel to an undulate-roofed tunnel, the interaction impedance distribution of the improved NQSWS is more uniform than that of the original NQSWS under the same tunnel area and average interaction impedance. Surprisingly, this evolution indeed leads to a significant boost in the TWT's output power and efficiency. Through PIC simulations under a voltage of 23.7 kV and current of 250 mA, the improved NQSWS TWT achieves a maximum average output power of 328 W and a 3-dB power bandwidth of 42 GHz. These results represent improvements of 35.5% in conversion efficiency and 16.7% in bandwidth compared to the original NQSWS. Furthermore, the improved NQSWS TWT has a lower beam expansion rate (BER) (about 50% reduction) and better beam transmission performance under equivalent magnetic field amplitude compared to the original NQSWS TWT, benefiting from more evenly distributed beam edge potentials. This efficiency-enhancing mechanism via pursuing better field uniformity could also be applied to other SB vacuum electronic devices (VEDs) to boost their performance, especially in millimeter-wave and terahertz region.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2024.3449250</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5779-4225</orcidid><orcidid>https://orcid.org/0000-0002-9580-4823</orcidid><orcidid>https://orcid.org/0000-0002-3423-8426</orcidid><orcidid>https://orcid.org/0000-0003-2938-6237</orcidid><orcidid>https://orcid.org/0000-0002-0737-027X</orcidid><orcidid>https://orcid.org/0000-0003-3996-6729</orcidid><orcidid>https://orcid.org/0000-0002-5712-4552</orcidid><orcidid>https://orcid.org/0000-0001-6877-9768</orcidid><orcidid>https://orcid.org/0000-0001-7853-1790</orcidid><orcidid>https://orcid.org/0000-0001-9328-0053</orcidid><orcidid>https://orcid.org/0000-0002-8952-960X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2024-10, Vol.71 (10), p.6388-6394 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TED_2024_3449250 |
source | IEEE Electronic Library (IEL) |
subjects | Bandwidth Bandwidths Dispersion Efficiency Electric potential Electrons Energy conversion efficiency Impedance Kurtosis Millimeter waves Optimization Power generation Sheet electron beam slow wave structure (SWS) terahertz Traveling wave tubes Traveling waves traveling-wave tube (TWT) Wave interaction |
title | Study on Efficiency-Enhancing Mechanism for SB TWT by Evenly Distributing SWS Impedance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T09%3A28%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20on%20Efficiency-Enhancing%20Mechanism%20for%20SB%20TWT%20by%20Evenly%20Distributing%20SWS%20Impedance&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Zhang,%20Jian&rft.date=2024-10-01&rft.volume=71&rft.issue=10&rft.spage=6388&rft.epage=6394&rft.pages=6388-6394&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2024.3449250&rft_dat=%3Cproquest_RIE%3E3109496437%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3109496437&rft_id=info:pmid/&rft_ieee_id=10659239&rfr_iscdi=true |