Study on Efficiency-Enhancing Mechanism for SB TWT by Evenly Distributing SWS Impedance

In this article, we propose a novel approach to enhance beam-wave interaction intensity in sheet beam (SB) traveling-wave tubes (TWTs). By reshaping previously reported nonquasi-2-D slow wave structure (NQSWS) from a cosine tunnel to an undulate-roofed tunnel, the interaction impedance distribution...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2024-10, Vol.71 (10), p.6388-6394
Hauptverfasser: Zhang, Jian, Cai, Jinchi, Xu, Jin, He, Jun, Yin, Pengcheng, Yin, Hairong, Yue, Lingna, Xu, Yong, Luo, Jinjing, Wu, Gangxiong, Zhao, Guoqing, Wu, Zhenhua, Wang, Wenxiang, Wang, Hailong, Wei, Yanyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6394
container_issue 10
container_start_page 6388
container_title IEEE transactions on electron devices
container_volume 71
creator Zhang, Jian
Cai, Jinchi
Xu, Jin
He, Jun
Yin, Pengcheng
Yin, Hairong
Yue, Lingna
Xu, Yong
Luo, Jinjing
Wu, Gangxiong
Zhao, Guoqing
Wu, Zhenhua
Wang, Wenxiang
Wang, Hailong
Wei, Yanyu
description In this article, we propose a novel approach to enhance beam-wave interaction intensity in sheet beam (SB) traveling-wave tubes (TWTs). By reshaping previously reported nonquasi-2-D slow wave structure (NQSWS) from a cosine tunnel to an undulate-roofed tunnel, the interaction impedance distribution of the improved NQSWS is more uniform than that of the original NQSWS under the same tunnel area and average interaction impedance. Surprisingly, this evolution indeed leads to a significant boost in the TWT's output power and efficiency. Through PIC simulations under a voltage of 23.7 kV and current of 250 mA, the improved NQSWS TWT achieves a maximum average output power of 328 W and a 3-dB power bandwidth of 42 GHz. These results represent improvements of 35.5% in conversion efficiency and 16.7% in bandwidth compared to the original NQSWS. Furthermore, the improved NQSWS TWT has a lower beam expansion rate (BER) (about 50% reduction) and better beam transmission performance under equivalent magnetic field amplitude compared to the original NQSWS TWT, benefiting from more evenly distributed beam edge potentials. This efficiency-enhancing mechanism via pursuing better field uniformity could also be applied to other SB vacuum electronic devices (VEDs) to boost their performance, especially in millimeter-wave and terahertz region.
doi_str_mv 10.1109/TED.2024.3449250
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TED_2024_3449250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10659239</ieee_id><sourcerecordid>3109496437</sourcerecordid><originalsourceid>FETCH-LOGICAL-c175t-42d6fec0386bb34cf1b0e0a5b3129ba11088dbea59d71bf8352f3880c2a74ff33</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EEqWwMzBYYk7xZ2KPUAJUKmJIUUcrdmxw1SbFTpDy73HVDkx3Jz3vne4B4BajGcZIPqzK5xlBhM0oY5JwdAYmmPMikznLz8EEISwySQW9BFcxbtKYM0YmYF31QzPCroWlc95425oxK9vvujW-_YLv1qTWxx10XYDVE1ytV1CPsPy17XaEzz72weuhP7DVuoKL3d42KWuvwYWrt9HenOoUfL6Uq_lbtvx4Xcwfl5nBBe8zRprcWYOoyLWmzDiskUU11xQTqev0mRCNtjWXTYG1E5QTR4VAhtQFc47SKbg_7t2H7mewsVebbghtOqlo0sLS-7RIFDpSJnQxBuvUPvhdHUaFkTroU0mfOuhTJ30pcneMeGvtPzznklBJ_wAayWqv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3109496437</pqid></control><display><type>article</type><title>Study on Efficiency-Enhancing Mechanism for SB TWT by Evenly Distributing SWS Impedance</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Jian ; Cai, Jinchi ; Xu, Jin ; He, Jun ; Yin, Pengcheng ; Yin, Hairong ; Yue, Lingna ; Xu, Yong ; Luo, Jinjing ; Wu, Gangxiong ; Zhao, Guoqing ; Wu, Zhenhua ; Wang, Wenxiang ; Wang, Hailong ; Wei, Yanyu</creator><creatorcontrib>Zhang, Jian ; Cai, Jinchi ; Xu, Jin ; He, Jun ; Yin, Pengcheng ; Yin, Hairong ; Yue, Lingna ; Xu, Yong ; Luo, Jinjing ; Wu, Gangxiong ; Zhao, Guoqing ; Wu, Zhenhua ; Wang, Wenxiang ; Wang, Hailong ; Wei, Yanyu</creatorcontrib><description>In this article, we propose a novel approach to enhance beam-wave interaction intensity in sheet beam (SB) traveling-wave tubes (TWTs). By reshaping previously reported nonquasi-2-D slow wave structure (NQSWS) from a cosine tunnel to an undulate-roofed tunnel, the interaction impedance distribution of the improved NQSWS is more uniform than that of the original NQSWS under the same tunnel area and average interaction impedance. Surprisingly, this evolution indeed leads to a significant boost in the TWT's output power and efficiency. Through PIC simulations under a voltage of 23.7 kV and current of 250 mA, the improved NQSWS TWT achieves a maximum average output power of 328 W and a 3-dB power bandwidth of 42 GHz. These results represent improvements of 35.5% in conversion efficiency and 16.7% in bandwidth compared to the original NQSWS. Furthermore, the improved NQSWS TWT has a lower beam expansion rate (BER) (about 50% reduction) and better beam transmission performance under equivalent magnetic field amplitude compared to the original NQSWS TWT, benefiting from more evenly distributed beam edge potentials. This efficiency-enhancing mechanism via pursuing better field uniformity could also be applied to other SB vacuum electronic devices (VEDs) to boost their performance, especially in millimeter-wave and terahertz region.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2024.3449250</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bandwidth ; Bandwidths ; Dispersion ; Efficiency ; Electric potential ; Electrons ; Energy conversion efficiency ; Impedance ; Kurtosis ; Millimeter waves ; Optimization ; Power generation ; Sheet electron beam ; slow wave structure (SWS) ; terahertz ; Traveling wave tubes ; Traveling waves ; traveling-wave tube (TWT) ; Wave interaction</subject><ispartof>IEEE transactions on electron devices, 2024-10, Vol.71 (10), p.6388-6394</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c175t-42d6fec0386bb34cf1b0e0a5b3129ba11088dbea59d71bf8352f3880c2a74ff33</cites><orcidid>0000-0001-5779-4225 ; 0000-0002-9580-4823 ; 0000-0002-3423-8426 ; 0000-0003-2938-6237 ; 0000-0002-0737-027X ; 0000-0003-3996-6729 ; 0000-0002-5712-4552 ; 0000-0001-6877-9768 ; 0000-0001-7853-1790 ; 0000-0001-9328-0053 ; 0000-0002-8952-960X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10659239$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27902,27903,54735</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10659239$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Cai, Jinchi</creatorcontrib><creatorcontrib>Xu, Jin</creatorcontrib><creatorcontrib>He, Jun</creatorcontrib><creatorcontrib>Yin, Pengcheng</creatorcontrib><creatorcontrib>Yin, Hairong</creatorcontrib><creatorcontrib>Yue, Lingna</creatorcontrib><creatorcontrib>Xu, Yong</creatorcontrib><creatorcontrib>Luo, Jinjing</creatorcontrib><creatorcontrib>Wu, Gangxiong</creatorcontrib><creatorcontrib>Zhao, Guoqing</creatorcontrib><creatorcontrib>Wu, Zhenhua</creatorcontrib><creatorcontrib>Wang, Wenxiang</creatorcontrib><creatorcontrib>Wang, Hailong</creatorcontrib><creatorcontrib>Wei, Yanyu</creatorcontrib><title>Study on Efficiency-Enhancing Mechanism for SB TWT by Evenly Distributing SWS Impedance</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>In this article, we propose a novel approach to enhance beam-wave interaction intensity in sheet beam (SB) traveling-wave tubes (TWTs). By reshaping previously reported nonquasi-2-D slow wave structure (NQSWS) from a cosine tunnel to an undulate-roofed tunnel, the interaction impedance distribution of the improved NQSWS is more uniform than that of the original NQSWS under the same tunnel area and average interaction impedance. Surprisingly, this evolution indeed leads to a significant boost in the TWT's output power and efficiency. Through PIC simulations under a voltage of 23.7 kV and current of 250 mA, the improved NQSWS TWT achieves a maximum average output power of 328 W and a 3-dB power bandwidth of 42 GHz. These results represent improvements of 35.5% in conversion efficiency and 16.7% in bandwidth compared to the original NQSWS. Furthermore, the improved NQSWS TWT has a lower beam expansion rate (BER) (about 50% reduction) and better beam transmission performance under equivalent magnetic field amplitude compared to the original NQSWS TWT, benefiting from more evenly distributed beam edge potentials. This efficiency-enhancing mechanism via pursuing better field uniformity could also be applied to other SB vacuum electronic devices (VEDs) to boost their performance, especially in millimeter-wave and terahertz region.</description><subject>Bandwidth</subject><subject>Bandwidths</subject><subject>Dispersion</subject><subject>Efficiency</subject><subject>Electric potential</subject><subject>Electrons</subject><subject>Energy conversion efficiency</subject><subject>Impedance</subject><subject>Kurtosis</subject><subject>Millimeter waves</subject><subject>Optimization</subject><subject>Power generation</subject><subject>Sheet electron beam</subject><subject>slow wave structure (SWS)</subject><subject>terahertz</subject><subject>Traveling wave tubes</subject><subject>Traveling waves</subject><subject>traveling-wave tube (TWT)</subject><subject>Wave interaction</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAQhi0EEqWwMzBYYk7xZ2KPUAJUKmJIUUcrdmxw1SbFTpDy73HVDkx3Jz3vne4B4BajGcZIPqzK5xlBhM0oY5JwdAYmmPMikznLz8EEISwySQW9BFcxbtKYM0YmYF31QzPCroWlc95425oxK9vvujW-_YLv1qTWxx10XYDVE1ytV1CPsPy17XaEzz72weuhP7DVuoKL3d42KWuvwYWrt9HenOoUfL6Uq_lbtvx4Xcwfl5nBBe8zRprcWYOoyLWmzDiskUU11xQTqev0mRCNtjWXTYG1E5QTR4VAhtQFc47SKbg_7t2H7mewsVebbghtOqlo0sLS-7RIFDpSJnQxBuvUPvhdHUaFkTroU0mfOuhTJ30pcneMeGvtPzznklBJ_wAayWqv</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Zhang, Jian</creator><creator>Cai, Jinchi</creator><creator>Xu, Jin</creator><creator>He, Jun</creator><creator>Yin, Pengcheng</creator><creator>Yin, Hairong</creator><creator>Yue, Lingna</creator><creator>Xu, Yong</creator><creator>Luo, Jinjing</creator><creator>Wu, Gangxiong</creator><creator>Zhao, Guoqing</creator><creator>Wu, Zhenhua</creator><creator>Wang, Wenxiang</creator><creator>Wang, Hailong</creator><creator>Wei, Yanyu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5779-4225</orcidid><orcidid>https://orcid.org/0000-0002-9580-4823</orcidid><orcidid>https://orcid.org/0000-0002-3423-8426</orcidid><orcidid>https://orcid.org/0000-0003-2938-6237</orcidid><orcidid>https://orcid.org/0000-0002-0737-027X</orcidid><orcidid>https://orcid.org/0000-0003-3996-6729</orcidid><orcidid>https://orcid.org/0000-0002-5712-4552</orcidid><orcidid>https://orcid.org/0000-0001-6877-9768</orcidid><orcidid>https://orcid.org/0000-0001-7853-1790</orcidid><orcidid>https://orcid.org/0000-0001-9328-0053</orcidid><orcidid>https://orcid.org/0000-0002-8952-960X</orcidid></search><sort><creationdate>20241001</creationdate><title>Study on Efficiency-Enhancing Mechanism for SB TWT by Evenly Distributing SWS Impedance</title><author>Zhang, Jian ; Cai, Jinchi ; Xu, Jin ; He, Jun ; Yin, Pengcheng ; Yin, Hairong ; Yue, Lingna ; Xu, Yong ; Luo, Jinjing ; Wu, Gangxiong ; Zhao, Guoqing ; Wu, Zhenhua ; Wang, Wenxiang ; Wang, Hailong ; Wei, Yanyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c175t-42d6fec0386bb34cf1b0e0a5b3129ba11088dbea59d71bf8352f3880c2a74ff33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bandwidth</topic><topic>Bandwidths</topic><topic>Dispersion</topic><topic>Efficiency</topic><topic>Electric potential</topic><topic>Electrons</topic><topic>Energy conversion efficiency</topic><topic>Impedance</topic><topic>Kurtosis</topic><topic>Millimeter waves</topic><topic>Optimization</topic><topic>Power generation</topic><topic>Sheet electron beam</topic><topic>slow wave structure (SWS)</topic><topic>terahertz</topic><topic>Traveling wave tubes</topic><topic>Traveling waves</topic><topic>traveling-wave tube (TWT)</topic><topic>Wave interaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Cai, Jinchi</creatorcontrib><creatorcontrib>Xu, Jin</creatorcontrib><creatorcontrib>He, Jun</creatorcontrib><creatorcontrib>Yin, Pengcheng</creatorcontrib><creatorcontrib>Yin, Hairong</creatorcontrib><creatorcontrib>Yue, Lingna</creatorcontrib><creatorcontrib>Xu, Yong</creatorcontrib><creatorcontrib>Luo, Jinjing</creatorcontrib><creatorcontrib>Wu, Gangxiong</creatorcontrib><creatorcontrib>Zhao, Guoqing</creatorcontrib><creatorcontrib>Wu, Zhenhua</creatorcontrib><creatorcontrib>Wang, Wenxiang</creatorcontrib><creatorcontrib>Wang, Hailong</creatorcontrib><creatorcontrib>Wei, Yanyu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Jian</au><au>Cai, Jinchi</au><au>Xu, Jin</au><au>He, Jun</au><au>Yin, Pengcheng</au><au>Yin, Hairong</au><au>Yue, Lingna</au><au>Xu, Yong</au><au>Luo, Jinjing</au><au>Wu, Gangxiong</au><au>Zhao, Guoqing</au><au>Wu, Zhenhua</au><au>Wang, Wenxiang</au><au>Wang, Hailong</au><au>Wei, Yanyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study on Efficiency-Enhancing Mechanism for SB TWT by Evenly Distributing SWS Impedance</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>71</volume><issue>10</issue><spage>6388</spage><epage>6394</epage><pages>6388-6394</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>In this article, we propose a novel approach to enhance beam-wave interaction intensity in sheet beam (SB) traveling-wave tubes (TWTs). By reshaping previously reported nonquasi-2-D slow wave structure (NQSWS) from a cosine tunnel to an undulate-roofed tunnel, the interaction impedance distribution of the improved NQSWS is more uniform than that of the original NQSWS under the same tunnel area and average interaction impedance. Surprisingly, this evolution indeed leads to a significant boost in the TWT's output power and efficiency. Through PIC simulations under a voltage of 23.7 kV and current of 250 mA, the improved NQSWS TWT achieves a maximum average output power of 328 W and a 3-dB power bandwidth of 42 GHz. These results represent improvements of 35.5% in conversion efficiency and 16.7% in bandwidth compared to the original NQSWS. Furthermore, the improved NQSWS TWT has a lower beam expansion rate (BER) (about 50% reduction) and better beam transmission performance under equivalent magnetic field amplitude compared to the original NQSWS TWT, benefiting from more evenly distributed beam edge potentials. This efficiency-enhancing mechanism via pursuing better field uniformity could also be applied to other SB vacuum electronic devices (VEDs) to boost their performance, especially in millimeter-wave and terahertz region.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2024.3449250</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5779-4225</orcidid><orcidid>https://orcid.org/0000-0002-9580-4823</orcidid><orcidid>https://orcid.org/0000-0002-3423-8426</orcidid><orcidid>https://orcid.org/0000-0003-2938-6237</orcidid><orcidid>https://orcid.org/0000-0002-0737-027X</orcidid><orcidid>https://orcid.org/0000-0003-3996-6729</orcidid><orcidid>https://orcid.org/0000-0002-5712-4552</orcidid><orcidid>https://orcid.org/0000-0001-6877-9768</orcidid><orcidid>https://orcid.org/0000-0001-7853-1790</orcidid><orcidid>https://orcid.org/0000-0001-9328-0053</orcidid><orcidid>https://orcid.org/0000-0002-8952-960X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2024-10, Vol.71 (10), p.6388-6394
issn 0018-9383
1557-9646
language eng
recordid cdi_crossref_primary_10_1109_TED_2024_3449250
source IEEE Electronic Library (IEL)
subjects Bandwidth
Bandwidths
Dispersion
Efficiency
Electric potential
Electrons
Energy conversion efficiency
Impedance
Kurtosis
Millimeter waves
Optimization
Power generation
Sheet electron beam
slow wave structure (SWS)
terahertz
Traveling wave tubes
Traveling waves
traveling-wave tube (TWT)
Wave interaction
title Study on Efficiency-Enhancing Mechanism for SB TWT by Evenly Distributing SWS Impedance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T09%3A28%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20on%20Efficiency-Enhancing%20Mechanism%20for%20SB%20TWT%20by%20Evenly%20Distributing%20SWS%20Impedance&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Zhang,%20Jian&rft.date=2024-10-01&rft.volume=71&rft.issue=10&rft.spage=6388&rft.epage=6394&rft.pages=6388-6394&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2024.3449250&rft_dat=%3Cproquest_RIE%3E3109496437%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3109496437&rft_id=info:pmid/&rft_ieee_id=10659239&rfr_iscdi=true