Voltage-Controlled Skyrmion-Based Leaky Integrate and Fire Neurons for Spiking Neural Networks

Spintronics is an emerging technology for data storage and computation. Magnetic skyrmion-based devices are attractive in this field due to their small size and low energy consumption. However, controlling skyrmions' creation, deletion, and motion is challenging. In this article, we propose a n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2024-10, Vol.71 (10), p.6395-6402
Hauptverfasser: Lone, Aijaz H., Aguirre, Fernando, Rahimi, Daniel N., Lanza, Mario, Setti, Gianluca, Fariborzi, Hossein
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6402
container_issue 10
container_start_page 6395
container_title IEEE transactions on electron devices
container_volume 71
creator Lone, Aijaz H.
Aguirre, Fernando
Rahimi, Daniel N.
Lanza, Mario
Setti, Gianluca
Fariborzi, Hossein
description Spintronics is an emerging technology for data storage and computation. Magnetic skyrmion-based devices are attractive in this field due to their small size and low energy consumption. However, controlling skyrmions' creation, deletion, and motion is challenging. In this article, we propose a novel energy-efficient skyrmion-based device structure and demonstrate its use as a leaky integrate and fire (LIF) neuron for neuromorphic computing. Using micromagnetic simulations, we show that skyrmions can be confined by patterning the geometry of the free layer (FL) in a magnetic tunnel junction (MTJ) and demonstrate that the size of the skyrmion can be adjusted by applying pulsed voltage stresses, and when tuned, the device acts as an LIF neuron. The input voltage spikes at the input terminal control the spike rate. The MTJ dissipates energy around 10.23 fJ/spike. A spiking neural network (SNN) of such skyrmion-based LIF neurons can classify images from the Modified National Institute of Standards and Technology (MNIST) dataset.
doi_str_mv 10.1109/TED.2024.3442161
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TED_2024_3442161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10643493</ieee_id><sourcerecordid>3109496882</sourcerecordid><originalsourceid>FETCH-LOGICAL-c175t-f8e9e6f3317ad2008152a819c55c867aaca96f7fb2e825f7f61af6dc5353814e3</originalsourceid><addsrcrecordid>eNpNkL1PwzAQxS0EEuVjZ2CIxJzi79gjlBYqVTC0MGKZ5FylSeNip0L973FpB6Z37_TenfRD6IbgISFY3y_GT0OKKR8yzimR5AQNiBBFriWXp2iAMVG5Zoqdo4sYV8nKlBugzw_f9nYJ-ch3ffBtC1U2b3ZhXfsuf7Qx2RnYZpdNux6WwfaQ2a7KJnWA7BW2wXcxcz5k803d1N3yb2fbJP2PD028QmfOthGuj3qJ3ifjxegln709T0cPs7wkhehzp0CDdIyRwlYUY0UEtYroUohSycLa0mrpCvdFQVGRBkmsk1UpmGCKcGCX6O5wdxP89xZib1Z-G7r00rBEh2upFE0pfEiVwccYwJlNqNc27AzBZk_RJIpmT9EcKabK7aFSA8C_uOSMa8Z-AYifbhA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3109496882</pqid></control><display><type>article</type><title>Voltage-Controlled Skyrmion-Based Leaky Integrate and Fire Neurons for Spiking Neural Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Lone, Aijaz H. ; Aguirre, Fernando ; Rahimi, Daniel N. ; Lanza, Mario ; Setti, Gianluca ; Fariborzi, Hossein</creator><creatorcontrib>Lone, Aijaz H. ; Aguirre, Fernando ; Rahimi, Daniel N. ; Lanza, Mario ; Setti, Gianluca ; Fariborzi, Hossein</creatorcontrib><description>Spintronics is an emerging technology for data storage and computation. Magnetic skyrmion-based devices are attractive in this field due to their small size and low energy consumption. However, controlling skyrmions' creation, deletion, and motion is challenging. In this article, we propose a novel energy-efficient skyrmion-based device structure and demonstrate its use as a leaky integrate and fire (LIF) neuron for neuromorphic computing. Using micromagnetic simulations, we show that skyrmions can be confined by patterning the geometry of the free layer (FL) in a magnetic tunnel junction (MTJ) and demonstrate that the size of the skyrmion can be adjusted by applying pulsed voltage stresses, and when tuned, the device acts as an LIF neuron. The input voltage spikes at the input terminal control the spike rate. The MTJ dissipates energy around 10.23 fJ/spike. A spiking neural network (SNN) of such skyrmion-based LIF neurons can classify images from the Modified National Institute of Standards and Technology (MNIST) dataset.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2024.3442161</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Anisotropic magnetoresistance ; Data storage ; Electric potential ; Energy consumption ; Hypothetical particles ; Leaky integrate and fire (LIF) neuron ; Magnetic confinement ; magnetic tunnel junction (MTJ) ; Magnetic tunneling ; Magnetization ; Mathematical models ; Neural networks ; neuromorphic computing ; Neurons ; Particle theory ; skyrmion ; Skyrmions ; spiking neural network (SNN) ; Spintronics ; Tunnel junctions ; Voltage</subject><ispartof>IEEE transactions on electron devices, 2024-10, Vol.71 (10), p.6395-6402</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c175t-f8e9e6f3317ad2008152a819c55c867aaca96f7fb2e825f7f61af6dc5353814e3</cites><orcidid>0000-0002-1687-2917 ; 0000-0002-7828-0239 ; 0000-0002-2496-1856 ; 0000-0003-4756-8632</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10643493$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10643493$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lone, Aijaz H.</creatorcontrib><creatorcontrib>Aguirre, Fernando</creatorcontrib><creatorcontrib>Rahimi, Daniel N.</creatorcontrib><creatorcontrib>Lanza, Mario</creatorcontrib><creatorcontrib>Setti, Gianluca</creatorcontrib><creatorcontrib>Fariborzi, Hossein</creatorcontrib><title>Voltage-Controlled Skyrmion-Based Leaky Integrate and Fire Neurons for Spiking Neural Networks</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>Spintronics is an emerging technology for data storage and computation. Magnetic skyrmion-based devices are attractive in this field due to their small size and low energy consumption. However, controlling skyrmions' creation, deletion, and motion is challenging. In this article, we propose a novel energy-efficient skyrmion-based device structure and demonstrate its use as a leaky integrate and fire (LIF) neuron for neuromorphic computing. Using micromagnetic simulations, we show that skyrmions can be confined by patterning the geometry of the free layer (FL) in a magnetic tunnel junction (MTJ) and demonstrate that the size of the skyrmion can be adjusted by applying pulsed voltage stresses, and when tuned, the device acts as an LIF neuron. The input voltage spikes at the input terminal control the spike rate. The MTJ dissipates energy around 10.23 fJ/spike. A spiking neural network (SNN) of such skyrmion-based LIF neurons can classify images from the Modified National Institute of Standards and Technology (MNIST) dataset.</description><subject>Anisotropic magnetoresistance</subject><subject>Data storage</subject><subject>Electric potential</subject><subject>Energy consumption</subject><subject>Hypothetical particles</subject><subject>Leaky integrate and fire (LIF) neuron</subject><subject>Magnetic confinement</subject><subject>magnetic tunnel junction (MTJ)</subject><subject>Magnetic tunneling</subject><subject>Magnetization</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>neuromorphic computing</subject><subject>Neurons</subject><subject>Particle theory</subject><subject>skyrmion</subject><subject>Skyrmions</subject><subject>spiking neural network (SNN)</subject><subject>Spintronics</subject><subject>Tunnel junctions</subject><subject>Voltage</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkL1PwzAQxS0EEuVjZ2CIxJzi79gjlBYqVTC0MGKZ5FylSeNip0L973FpB6Z37_TenfRD6IbgISFY3y_GT0OKKR8yzimR5AQNiBBFriWXp2iAMVG5Zoqdo4sYV8nKlBugzw_f9nYJ-ch3ffBtC1U2b3ZhXfsuf7Qx2RnYZpdNux6WwfaQ2a7KJnWA7BW2wXcxcz5k803d1N3yb2fbJP2PD028QmfOthGuj3qJ3ifjxegln709T0cPs7wkhehzp0CDdIyRwlYUY0UEtYroUohSycLa0mrpCvdFQVGRBkmsk1UpmGCKcGCX6O5wdxP89xZib1Z-G7r00rBEh2upFE0pfEiVwccYwJlNqNc27AzBZk_RJIpmT9EcKabK7aFSA8C_uOSMa8Z-AYifbhA</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Lone, Aijaz H.</creator><creator>Aguirre, Fernando</creator><creator>Rahimi, Daniel N.</creator><creator>Lanza, Mario</creator><creator>Setti, Gianluca</creator><creator>Fariborzi, Hossein</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1687-2917</orcidid><orcidid>https://orcid.org/0000-0002-7828-0239</orcidid><orcidid>https://orcid.org/0000-0002-2496-1856</orcidid><orcidid>https://orcid.org/0000-0003-4756-8632</orcidid></search><sort><creationdate>20241001</creationdate><title>Voltage-Controlled Skyrmion-Based Leaky Integrate and Fire Neurons for Spiking Neural Networks</title><author>Lone, Aijaz H. ; Aguirre, Fernando ; Rahimi, Daniel N. ; Lanza, Mario ; Setti, Gianluca ; Fariborzi, Hossein</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c175t-f8e9e6f3317ad2008152a819c55c867aaca96f7fb2e825f7f61af6dc5353814e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anisotropic magnetoresistance</topic><topic>Data storage</topic><topic>Electric potential</topic><topic>Energy consumption</topic><topic>Hypothetical particles</topic><topic>Leaky integrate and fire (LIF) neuron</topic><topic>Magnetic confinement</topic><topic>magnetic tunnel junction (MTJ)</topic><topic>Magnetic tunneling</topic><topic>Magnetization</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>neuromorphic computing</topic><topic>Neurons</topic><topic>Particle theory</topic><topic>skyrmion</topic><topic>Skyrmions</topic><topic>spiking neural network (SNN)</topic><topic>Spintronics</topic><topic>Tunnel junctions</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lone, Aijaz H.</creatorcontrib><creatorcontrib>Aguirre, Fernando</creatorcontrib><creatorcontrib>Rahimi, Daniel N.</creatorcontrib><creatorcontrib>Lanza, Mario</creatorcontrib><creatorcontrib>Setti, Gianluca</creatorcontrib><creatorcontrib>Fariborzi, Hossein</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lone, Aijaz H.</au><au>Aguirre, Fernando</au><au>Rahimi, Daniel N.</au><au>Lanza, Mario</au><au>Setti, Gianluca</au><au>Fariborzi, Hossein</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Voltage-Controlled Skyrmion-Based Leaky Integrate and Fire Neurons for Spiking Neural Networks</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>71</volume><issue>10</issue><spage>6395</spage><epage>6402</epage><pages>6395-6402</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>Spintronics is an emerging technology for data storage and computation. Magnetic skyrmion-based devices are attractive in this field due to their small size and low energy consumption. However, controlling skyrmions' creation, deletion, and motion is challenging. In this article, we propose a novel energy-efficient skyrmion-based device structure and demonstrate its use as a leaky integrate and fire (LIF) neuron for neuromorphic computing. Using micromagnetic simulations, we show that skyrmions can be confined by patterning the geometry of the free layer (FL) in a magnetic tunnel junction (MTJ) and demonstrate that the size of the skyrmion can be adjusted by applying pulsed voltage stresses, and when tuned, the device acts as an LIF neuron. The input voltage spikes at the input terminal control the spike rate. The MTJ dissipates energy around 10.23 fJ/spike. A spiking neural network (SNN) of such skyrmion-based LIF neurons can classify images from the Modified National Institute of Standards and Technology (MNIST) dataset.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2024.3442161</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1687-2917</orcidid><orcidid>https://orcid.org/0000-0002-7828-0239</orcidid><orcidid>https://orcid.org/0000-0002-2496-1856</orcidid><orcidid>https://orcid.org/0000-0003-4756-8632</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2024-10, Vol.71 (10), p.6395-6402
issn 0018-9383
1557-9646
language eng
recordid cdi_crossref_primary_10_1109_TED_2024_3442161
source IEEE Electronic Library (IEL)
subjects Anisotropic magnetoresistance
Data storage
Electric potential
Energy consumption
Hypothetical particles
Leaky integrate and fire (LIF) neuron
Magnetic confinement
magnetic tunnel junction (MTJ)
Magnetic tunneling
Magnetization
Mathematical models
Neural networks
neuromorphic computing
Neurons
Particle theory
skyrmion
Skyrmions
spiking neural network (SNN)
Spintronics
Tunnel junctions
Voltage
title Voltage-Controlled Skyrmion-Based Leaky Integrate and Fire Neurons for Spiking Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A23%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Voltage-Controlled%20Skyrmion-Based%20Leaky%20Integrate%20and%20Fire%20Neurons%20for%20Spiking%20Neural%20Networks&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Lone,%20Aijaz%20H.&rft.date=2024-10-01&rft.volume=71&rft.issue=10&rft.spage=6395&rft.epage=6402&rft.pages=6395-6402&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2024.3442161&rft_dat=%3Cproquest_RIE%3E3109496882%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3109496882&rft_id=info:pmid/&rft_ieee_id=10643493&rfr_iscdi=true