Electrothermal Small-Signal Model of Nanosheet FETs With Zero-Temperature-Coefficient Based Parameters Extraction Method
Nanosheet FET (NSFET) is a promising structure for scaling transistors to the sub-5-nm node. However, the self-heating effect (SHE) impacts device performance at gigahertz frequencies, necessitating the small-signal modeling that accommodates SHE. Thus, an electrothermal coupled small-signal equival...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2024-07, Vol.71 (7), p.4153-4159 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4159 |
---|---|
container_issue | 7 |
container_start_page | 4153 |
container_title | IEEE transactions on electron devices |
container_volume | 71 |
creator | Lyu, Yaoyang Chen, Wangyong Cai, Linlin |
description | Nanosheet FET (NSFET) is a promising structure for scaling transistors to the sub-5-nm node. However, the self-heating effect (SHE) impacts device performance at gigahertz frequencies, necessitating the small-signal modeling that accommodates SHE. Thus, an electrothermal coupled small-signal equivalent circuit model of NSFET and the corresponding parameters extraction method are introduced in this article. The introduced model is verified with TCAD simulated data, achieving excellent agreement between simulated and modeled S -parameters with a modeling error under 1.86%. A zero-temperature coefficient (ZTC)-based thermal network parameter extraction method is proposed, to accurately characterize SHE, enhancing stability of the extracted thermal resistance ( {R} _{\text {th}} ) and capacitance ( {C} _{\text {th}} ) at different {V} _{\text {gs}} . The effectiveness of {R} _{\text {th}} and {C} _{\text {th}} is confirmed by small-signal model parameters extracted from TCAD data, achieving improved accuracy at low frequencies. The bias and temperature rise ( \Delta T ) dependencies of intrinsic model parameters and underlying physical mechanisms are discussed. Results reveal that SHE negatively impacts {g} _{m} and {g} _{\text {ds}} , but positively affects {C} _{\text {ds}} . Moreover, \tau _{m} is positively impacted at {V} _{\text {gs}} below ZTC and negatively affected at {V} _{\text {gs}} above ZTC. This introduced small-signal model provides valuable feedback for NSFET-based RF circuit design under SHE conditions. |
doi_str_mv | 10.1109/TED.2024.3395413 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TED_2024_3395413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10525687</ieee_id><sourcerecordid>3070781131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-2c6a458d11784642ae2f5d588ed456ee6313b95fdd997454bfc1bd4b2700dc8c3</originalsourceid><addsrcrecordid>eNpNkM1Lw0AUxBdRsFbvHjwseE7dz2Rz1Bo_oFWhFcFL2Oy-mJQ0W3e3UP97U-rByxsGZgbeD6FLSiaUkvxmWdxPGGFiwnkuBeVHaESlzJI8FekxGhFCVZJzxU_RWQirwaZCsBHaFR2Y6F1swK91hxfD6ZJF-9UPZu4sdNjV-EX3LjQAET8Uy4A_2tjgT_AuWcJ6A17HrYdk6qCuW9NCH_GdDmDxm_Z6DRF8wMUuem1i63o8h9g4e45Oat0FuPjTMXoftqdPyez18Xl6O0sMEzImzKRaSGUpzZRIBdPAammlUmCFTAFSTnmVy9raPM-EFFVtaGVFxTJCrFGGj9H1YXfj3fcWQixXbuuH70LJSUYyRekwMUbkkDLeheChLje-XWv_U1JS7vmWA99yz7f84ztUrg6VFgD-xSWTqcr4LxL5d5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3070781131</pqid></control><display><type>article</type><title>Electrothermal Small-Signal Model of Nanosheet FETs With Zero-Temperature-Coefficient Based Parameters Extraction Method</title><source>IEEE Electronic Library (IEL)</source><creator>Lyu, Yaoyang ; Chen, Wangyong ; Cai, Linlin</creator><creatorcontrib>Lyu, Yaoyang ; Chen, Wangyong ; Cai, Linlin</creatorcontrib><description><![CDATA[Nanosheet FET (NSFET) is a promising structure for scaling transistors to the sub-5-nm node. However, the self-heating effect (SHE) impacts device performance at gigahertz frequencies, necessitating the small-signal modeling that accommodates SHE. Thus, an electrothermal coupled small-signal equivalent circuit model of NSFET and the corresponding parameters extraction method are introduced in this article. The introduced model is verified with TCAD simulated data, achieving excellent agreement between simulated and modeled S -parameters with a modeling error under 1.86%. A zero-temperature coefficient (ZTC)-based thermal network parameter extraction method is proposed, to accurately characterize SHE, enhancing stability of the extracted thermal resistance (<inline-formula> <tex-math notation="LaTeX">{R} _{\text {th}} </tex-math></inline-formula>) and capacitance (<inline-formula> <tex-math notation="LaTeX">{C} _{\text {th}} </tex-math></inline-formula>) at different <inline-formula> <tex-math notation="LaTeX">{V} _{\text {gs}} </tex-math></inline-formula>. The effectiveness of <inline-formula> <tex-math notation="LaTeX">{R} _{\text {th}} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">{C} _{\text {th}} </tex-math></inline-formula> is confirmed by small-signal model parameters extracted from TCAD data, achieving improved accuracy at low frequencies. The bias and temperature rise (<inline-formula> <tex-math notation="LaTeX">\Delta </tex-math></inline-formula> T ) dependencies of intrinsic model parameters and underlying physical mechanisms are discussed. Results reveal that SHE negatively impacts <inline-formula> <tex-math notation="LaTeX">{g} _{m} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">{g} _{\text {ds}} </tex-math></inline-formula>, but positively affects <inline-formula> <tex-math notation="LaTeX">{C} _{\text {ds}} </tex-math></inline-formula>. Moreover, <inline-formula> <tex-math notation="LaTeX">\tau _{m} </tex-math></inline-formula> is positively impacted at <inline-formula> <tex-math notation="LaTeX">{V} _{\text {gs}} </tex-math></inline-formula> below ZTC and negatively affected at <inline-formula> <tex-math notation="LaTeX">{V} _{\text {gs}} </tex-math></inline-formula> above ZTC. This introduced small-signal model provides valuable feedback for NSFET-based RF circuit design under SHE conditions.]]></description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2024.3395413</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Capacitance ; Circuit design ; Data models ; Equivalent circuits ; Field effect transistors ; High temperature effects ; Integrated circuit modeling ; Logic gates ; Mathematical models ; Modelling ; Nanosheet FET (NSFET) ; Nanosheets ; Parameter extraction ; Parameters ; self-heating effect (SHE) ; small-signal model ; thermal network ; Thermal resistance ; zero-temperature coefficient (ZTC)</subject><ispartof>IEEE transactions on electron devices, 2024-07, Vol.71 (7), p.4153-4159</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-2c6a458d11784642ae2f5d588ed456ee6313b95fdd997454bfc1bd4b2700dc8c3</cites><orcidid>0000-0001-5545-2168 ; 0000-0003-0294-4366 ; 0000-0001-8335-0994</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10525687$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10525687$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lyu, Yaoyang</creatorcontrib><creatorcontrib>Chen, Wangyong</creatorcontrib><creatorcontrib>Cai, Linlin</creatorcontrib><title>Electrothermal Small-Signal Model of Nanosheet FETs With Zero-Temperature-Coefficient Based Parameters Extraction Method</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description><![CDATA[Nanosheet FET (NSFET) is a promising structure for scaling transistors to the sub-5-nm node. However, the self-heating effect (SHE) impacts device performance at gigahertz frequencies, necessitating the small-signal modeling that accommodates SHE. Thus, an electrothermal coupled small-signal equivalent circuit model of NSFET and the corresponding parameters extraction method are introduced in this article. The introduced model is verified with TCAD simulated data, achieving excellent agreement between simulated and modeled S -parameters with a modeling error under 1.86%. A zero-temperature coefficient (ZTC)-based thermal network parameter extraction method is proposed, to accurately characterize SHE, enhancing stability of the extracted thermal resistance (<inline-formula> <tex-math notation="LaTeX">{R} _{\text {th}} </tex-math></inline-formula>) and capacitance (<inline-formula> <tex-math notation="LaTeX">{C} _{\text {th}} </tex-math></inline-formula>) at different <inline-formula> <tex-math notation="LaTeX">{V} _{\text {gs}} </tex-math></inline-formula>. The effectiveness of <inline-formula> <tex-math notation="LaTeX">{R} _{\text {th}} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">{C} _{\text {th}} </tex-math></inline-formula> is confirmed by small-signal model parameters extracted from TCAD data, achieving improved accuracy at low frequencies. The bias and temperature rise (<inline-formula> <tex-math notation="LaTeX">\Delta </tex-math></inline-formula> T ) dependencies of intrinsic model parameters and underlying physical mechanisms are discussed. Results reveal that SHE negatively impacts <inline-formula> <tex-math notation="LaTeX">{g} _{m} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">{g} _{\text {ds}} </tex-math></inline-formula>, but positively affects <inline-formula> <tex-math notation="LaTeX">{C} _{\text {ds}} </tex-math></inline-formula>. Moreover, <inline-formula> <tex-math notation="LaTeX">\tau _{m} </tex-math></inline-formula> is positively impacted at <inline-formula> <tex-math notation="LaTeX">{V} _{\text {gs}} </tex-math></inline-formula> below ZTC and negatively affected at <inline-formula> <tex-math notation="LaTeX">{V} _{\text {gs}} </tex-math></inline-formula> above ZTC. This introduced small-signal model provides valuable feedback for NSFET-based RF circuit design under SHE conditions.]]></description><subject>Capacitance</subject><subject>Circuit design</subject><subject>Data models</subject><subject>Equivalent circuits</subject><subject>Field effect transistors</subject><subject>High temperature effects</subject><subject>Integrated circuit modeling</subject><subject>Logic gates</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Nanosheet FET (NSFET)</subject><subject>Nanosheets</subject><subject>Parameter extraction</subject><subject>Parameters</subject><subject>self-heating effect (SHE)</subject><subject>small-signal model</subject><subject>thermal network</subject><subject>Thermal resistance</subject><subject>zero-temperature coefficient (ZTC)</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1Lw0AUxBdRsFbvHjwseE7dz2Rz1Bo_oFWhFcFL2Oy-mJQ0W3e3UP97U-rByxsGZgbeD6FLSiaUkvxmWdxPGGFiwnkuBeVHaESlzJI8FekxGhFCVZJzxU_RWQirwaZCsBHaFR2Y6F1swK91hxfD6ZJF-9UPZu4sdNjV-EX3LjQAET8Uy4A_2tjgT_AuWcJ6A17HrYdk6qCuW9NCH_GdDmDxm_Z6DRF8wMUuem1i63o8h9g4e45Oat0FuPjTMXoftqdPyez18Xl6O0sMEzImzKRaSGUpzZRIBdPAammlUmCFTAFSTnmVy9raPM-EFFVtaGVFxTJCrFGGj9H1YXfj3fcWQixXbuuH70LJSUYyRekwMUbkkDLeheChLje-XWv_U1JS7vmWA99yz7f84ztUrg6VFgD-xSWTqcr4LxL5d5w</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Lyu, Yaoyang</creator><creator>Chen, Wangyong</creator><creator>Cai, Linlin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5545-2168</orcidid><orcidid>https://orcid.org/0000-0003-0294-4366</orcidid><orcidid>https://orcid.org/0000-0001-8335-0994</orcidid></search><sort><creationdate>20240701</creationdate><title>Electrothermal Small-Signal Model of Nanosheet FETs With Zero-Temperature-Coefficient Based Parameters Extraction Method</title><author>Lyu, Yaoyang ; Chen, Wangyong ; Cai, Linlin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-2c6a458d11784642ae2f5d588ed456ee6313b95fdd997454bfc1bd4b2700dc8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Capacitance</topic><topic>Circuit design</topic><topic>Data models</topic><topic>Equivalent circuits</topic><topic>Field effect transistors</topic><topic>High temperature effects</topic><topic>Integrated circuit modeling</topic><topic>Logic gates</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Nanosheet FET (NSFET)</topic><topic>Nanosheets</topic><topic>Parameter extraction</topic><topic>Parameters</topic><topic>self-heating effect (SHE)</topic><topic>small-signal model</topic><topic>thermal network</topic><topic>Thermal resistance</topic><topic>zero-temperature coefficient (ZTC)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lyu, Yaoyang</creatorcontrib><creatorcontrib>Chen, Wangyong</creatorcontrib><creatorcontrib>Cai, Linlin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lyu, Yaoyang</au><au>Chen, Wangyong</au><au>Cai, Linlin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrothermal Small-Signal Model of Nanosheet FETs With Zero-Temperature-Coefficient Based Parameters Extraction Method</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2024-07-01</date><risdate>2024</risdate><volume>71</volume><issue>7</issue><spage>4153</spage><epage>4159</epage><pages>4153-4159</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract><![CDATA[Nanosheet FET (NSFET) is a promising structure for scaling transistors to the sub-5-nm node. However, the self-heating effect (SHE) impacts device performance at gigahertz frequencies, necessitating the small-signal modeling that accommodates SHE. Thus, an electrothermal coupled small-signal equivalent circuit model of NSFET and the corresponding parameters extraction method are introduced in this article. The introduced model is verified with TCAD simulated data, achieving excellent agreement between simulated and modeled S -parameters with a modeling error under 1.86%. A zero-temperature coefficient (ZTC)-based thermal network parameter extraction method is proposed, to accurately characterize SHE, enhancing stability of the extracted thermal resistance (<inline-formula> <tex-math notation="LaTeX">{R} _{\text {th}} </tex-math></inline-formula>) and capacitance (<inline-formula> <tex-math notation="LaTeX">{C} _{\text {th}} </tex-math></inline-formula>) at different <inline-formula> <tex-math notation="LaTeX">{V} _{\text {gs}} </tex-math></inline-formula>. The effectiveness of <inline-formula> <tex-math notation="LaTeX">{R} _{\text {th}} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">{C} _{\text {th}} </tex-math></inline-formula> is confirmed by small-signal model parameters extracted from TCAD data, achieving improved accuracy at low frequencies. The bias and temperature rise (<inline-formula> <tex-math notation="LaTeX">\Delta </tex-math></inline-formula> T ) dependencies of intrinsic model parameters and underlying physical mechanisms are discussed. Results reveal that SHE negatively impacts <inline-formula> <tex-math notation="LaTeX">{g} _{m} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">{g} _{\text {ds}} </tex-math></inline-formula>, but positively affects <inline-formula> <tex-math notation="LaTeX">{C} _{\text {ds}} </tex-math></inline-formula>. Moreover, <inline-formula> <tex-math notation="LaTeX">\tau _{m} </tex-math></inline-formula> is positively impacted at <inline-formula> <tex-math notation="LaTeX">{V} _{\text {gs}} </tex-math></inline-formula> below ZTC and negatively affected at <inline-formula> <tex-math notation="LaTeX">{V} _{\text {gs}} </tex-math></inline-formula> above ZTC. This introduced small-signal model provides valuable feedback for NSFET-based RF circuit design under SHE conditions.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2024.3395413</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5545-2168</orcidid><orcidid>https://orcid.org/0000-0003-0294-4366</orcidid><orcidid>https://orcid.org/0000-0001-8335-0994</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2024-07, Vol.71 (7), p.4153-4159 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TED_2024_3395413 |
source | IEEE Electronic Library (IEL) |
subjects | Capacitance Circuit design Data models Equivalent circuits Field effect transistors High temperature effects Integrated circuit modeling Logic gates Mathematical models Modelling Nanosheet FET (NSFET) Nanosheets Parameter extraction Parameters self-heating effect (SHE) small-signal model thermal network Thermal resistance zero-temperature coefficient (ZTC) |
title | Electrothermal Small-Signal Model of Nanosheet FETs With Zero-Temperature-Coefficient Based Parameters Extraction Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A34%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrothermal%20Small-Signal%20Model%20of%20Nanosheet%20FETs%20With%20Zero-Temperature-Coefficient%20Based%20Parameters%20Extraction%20Method&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Lyu,%20Yaoyang&rft.date=2024-07-01&rft.volume=71&rft.issue=7&rft.spage=4153&rft.epage=4159&rft.pages=4153-4159&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2024.3395413&rft_dat=%3Cproquest_RIE%3E3070781131%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3070781131&rft_id=info:pmid/&rft_ieee_id=10525687&rfr_iscdi=true |