Optimizing a-IGZO Source-Gated Transistor Current by Structure Alteration via TCAD Simulation and Experiment

This study aims to increase the output current of the amorphous indium-gallium-zinc oxide (a-IGZO) source-gated transistor (SGT) through technology computer-aided design (TCAD) simulation and experiment. As SGT proves to be useful in various low-power applications and wearable devices, the low outpu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2024-04, Vol.71 (4), p.2431-2437
Hauptverfasser: Sihapitak, Pongsakorn, Bermundo, Juan Paolo, Bestelink, Eva, Sporea, Radu A., Uraoka, Yukiharu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2437
container_issue 4
container_start_page 2431
container_title IEEE transactions on electron devices
container_volume 71
creator Sihapitak, Pongsakorn
Bermundo, Juan Paolo
Bestelink, Eva
Sporea, Radu A.
Uraoka, Yukiharu
description This study aims to increase the output current of the amorphous indium-gallium-zinc oxide (a-IGZO) source-gated transistor (SGT) through technology computer-aided design (TCAD) simulation and experiment. As SGT proves to be useful in various low-power applications and wearable devices, the low output current characteristics limit the adaptability of this structure. It is estimated that a higher output current level is achievable by optimizing this architecture while retaining fast saturation characteristics. The SGT structure simulations have been performed with adjusted density-of-states (DoS) parameters from experiments; this made TCAD simulation more realistic and can be used to predict the results of fabricated SGTs. The results from this study show that longer source-channel (SC) overlap and thinner channel is preferable; the SGT with longer SC overlap will result in the Mode II injection dominating over the Mode I injection. The Mode I injection occurs at the edge of source contact near the channel region, while the Mode II injection occurs at the bulk of the source at the farthest region from the channel. The result from the experiment shows that the fabricated SGT exhibits Mode II injection characteristics-that is the current will increase linearly with increasing gate voltage. From this study. it could be concluded that the SC overlap of 210~\mu \text{m} with a channel thickness of 20 nm and a channel length of 5~\mu \text{m} is the optimized structure that could provide high output current with little temperature dependence. Further improvement of the output current could be achieved by utilizing lower work function source metal.
doi_str_mv 10.1109/TED.2024.3360019
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TED_2024_3360019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10443419</ieee_id><sourcerecordid>2994790443</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-4e9a29c4173419f853cc64772ceaf3aaacf52c04e916c216eedef7258a6f6ab23</originalsourceid><addsrcrecordid>eNpNUD1PwzAUtBBIlMLOwGCJOcVfceKxakupVKlDw8ISue4LcpUmwXYQ5dfjKh2Ynt7p7t69Q-iRkgmlRL0Ui_mEESYmnEtCqLpCI5qmWaKkkNdoFKE8UTznt-jO-0NcpRBshOpNF-zR_trmE-tktfzY4G3bOwPJUgfY48LpxlsfWodnvXPQBLw74W1wvQm9AzytAzgdbNvgb6txMZvO8dYe-3rAdLPHi58OnD1G6T26qXTt4eEyx-j9dVHM3pL1ZrmaTdeJYSINiQClmTKCZlxQVeUpN0aKLGMGdMW11qZKmSGRRqVhVALsocpYmmtZSb1jfIyeB9_OtV89-FAe4k9NPFkypUSmiBA8ssjAMq713kFVdjGmdqeSkvLcaRk7Lc-dlpdOo-RpkFgA-EePdjEp_wOcI3Nk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2994790443</pqid></control><display><type>article</type><title>Optimizing a-IGZO Source-Gated Transistor Current by Structure Alteration via TCAD Simulation and Experiment</title><source>IEEE Electronic Library (IEL)</source><creator>Sihapitak, Pongsakorn ; Bermundo, Juan Paolo ; Bestelink, Eva ; Sporea, Radu A. ; Uraoka, Yukiharu</creator><creatorcontrib>Sihapitak, Pongsakorn ; Bermundo, Juan Paolo ; Bestelink, Eva ; Sporea, Radu A. ; Uraoka, Yukiharu</creatorcontrib><description><![CDATA[This study aims to increase the output current of the amorphous indium-gallium-zinc oxide (a-IGZO) source-gated transistor (SGT) through technology computer-aided design (TCAD) simulation and experiment. As SGT proves to be useful in various low-power applications and wearable devices, the low output current characteristics limit the adaptability of this structure. It is estimated that a higher output current level is achievable by optimizing this architecture while retaining fast saturation characteristics. The SGT structure simulations have been performed with adjusted density-of-states (DoS) parameters from experiments; this made TCAD simulation more realistic and can be used to predict the results of fabricated SGTs. The results from this study show that longer source-channel (SC) overlap and thinner channel is preferable; the SGT with longer SC overlap will result in the Mode II injection dominating over the Mode I injection. The Mode I injection occurs at the edge of source contact near the channel region, while the Mode II injection occurs at the bulk of the source at the farthest region from the channel. The result from the experiment shows that the fabricated SGT exhibits Mode II injection characteristics-that is the current will increase linearly with increasing gate voltage. From this study. it could be concluded that the SC overlap of <inline-formula> <tex-math notation="LaTeX">210~\mu \text{m} </tex-math></inline-formula> with a channel thickness of 20 nm and a channel length of <inline-formula> <tex-math notation="LaTeX">5~\mu \text{m} </tex-math></inline-formula> is the optimized structure that could provide high output current with little temperature dependence. Further improvement of the output current could be achieved by utilizing lower work function source metal.]]></description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2024.3360019</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Amorphous indium–gallium–zinc oxide thin-film transistor (a-IGZO TFT) ; CAD ; Capacitance ; Computer aided design ; Density of states ; Electrodes ; Fabrication ; Gallium ; Indium gallium zinc oxide ; Logic gates ; low temperature ; oxide semiconductors ; Radio frequency ; Schottky diodes ; Simulation ; source-gated transistors (SGTs) ; Temperature dependence ; Thin film transistors ; thin-film transistors (TFTs) ; Transistors ; Wearable technology ; Work functions ; Zinc oxide</subject><ispartof>IEEE transactions on electron devices, 2024-04, Vol.71 (4), p.2431-2437</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-4e9a29c4173419f853cc64772ceaf3aaacf52c04e916c216eedef7258a6f6ab23</cites><orcidid>0009-0002-7384-061X ; 0000-0002-9575-6112 ; 0000-0002-3759-3255 ; 0000-0001-6145-9243 ; 0000-0002-1319-3599</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10443419$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10443419$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sihapitak, Pongsakorn</creatorcontrib><creatorcontrib>Bermundo, Juan Paolo</creatorcontrib><creatorcontrib>Bestelink, Eva</creatorcontrib><creatorcontrib>Sporea, Radu A.</creatorcontrib><creatorcontrib>Uraoka, Yukiharu</creatorcontrib><title>Optimizing a-IGZO Source-Gated Transistor Current by Structure Alteration via TCAD Simulation and Experiment</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description><![CDATA[This study aims to increase the output current of the amorphous indium-gallium-zinc oxide (a-IGZO) source-gated transistor (SGT) through technology computer-aided design (TCAD) simulation and experiment. As SGT proves to be useful in various low-power applications and wearable devices, the low output current characteristics limit the adaptability of this structure. It is estimated that a higher output current level is achievable by optimizing this architecture while retaining fast saturation characteristics. The SGT structure simulations have been performed with adjusted density-of-states (DoS) parameters from experiments; this made TCAD simulation more realistic and can be used to predict the results of fabricated SGTs. The results from this study show that longer source-channel (SC) overlap and thinner channel is preferable; the SGT with longer SC overlap will result in the Mode II injection dominating over the Mode I injection. The Mode I injection occurs at the edge of source contact near the channel region, while the Mode II injection occurs at the bulk of the source at the farthest region from the channel. The result from the experiment shows that the fabricated SGT exhibits Mode II injection characteristics-that is the current will increase linearly with increasing gate voltage. From this study. it could be concluded that the SC overlap of <inline-formula> <tex-math notation="LaTeX">210~\mu \text{m} </tex-math></inline-formula> with a channel thickness of 20 nm and a channel length of <inline-formula> <tex-math notation="LaTeX">5~\mu \text{m} </tex-math></inline-formula> is the optimized structure that could provide high output current with little temperature dependence. Further improvement of the output current could be achieved by utilizing lower work function source metal.]]></description><subject>Amorphous indium–gallium–zinc oxide thin-film transistor (a-IGZO TFT)</subject><subject>CAD</subject><subject>Capacitance</subject><subject>Computer aided design</subject><subject>Density of states</subject><subject>Electrodes</subject><subject>Fabrication</subject><subject>Gallium</subject><subject>Indium gallium zinc oxide</subject><subject>Logic gates</subject><subject>low temperature</subject><subject>oxide semiconductors</subject><subject>Radio frequency</subject><subject>Schottky diodes</subject><subject>Simulation</subject><subject>source-gated transistors (SGTs)</subject><subject>Temperature dependence</subject><subject>Thin film transistors</subject><subject>thin-film transistors (TFTs)</subject><subject>Transistors</subject><subject>Wearable technology</subject><subject>Work functions</subject><subject>Zinc oxide</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNUD1PwzAUtBBIlMLOwGCJOcVfceKxakupVKlDw8ISue4LcpUmwXYQ5dfjKh2Ynt7p7t69Q-iRkgmlRL0Ui_mEESYmnEtCqLpCI5qmWaKkkNdoFKE8UTznt-jO-0NcpRBshOpNF-zR_trmE-tktfzY4G3bOwPJUgfY48LpxlsfWodnvXPQBLw74W1wvQm9AzytAzgdbNvgb6txMZvO8dYe-3rAdLPHi58OnD1G6T26qXTt4eEyx-j9dVHM3pL1ZrmaTdeJYSINiQClmTKCZlxQVeUpN0aKLGMGdMW11qZKmSGRRqVhVALsocpYmmtZSb1jfIyeB9_OtV89-FAe4k9NPFkypUSmiBA8ssjAMq713kFVdjGmdqeSkvLcaRk7Lc-dlpdOo-RpkFgA-EePdjEp_wOcI3Nk</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Sihapitak, Pongsakorn</creator><creator>Bermundo, Juan Paolo</creator><creator>Bestelink, Eva</creator><creator>Sporea, Radu A.</creator><creator>Uraoka, Yukiharu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0002-7384-061X</orcidid><orcidid>https://orcid.org/0000-0002-9575-6112</orcidid><orcidid>https://orcid.org/0000-0002-3759-3255</orcidid><orcidid>https://orcid.org/0000-0001-6145-9243</orcidid><orcidid>https://orcid.org/0000-0002-1319-3599</orcidid></search><sort><creationdate>20240401</creationdate><title>Optimizing a-IGZO Source-Gated Transistor Current by Structure Alteration via TCAD Simulation and Experiment</title><author>Sihapitak, Pongsakorn ; Bermundo, Juan Paolo ; Bestelink, Eva ; Sporea, Radu A. ; Uraoka, Yukiharu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-4e9a29c4173419f853cc64772ceaf3aaacf52c04e916c216eedef7258a6f6ab23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Amorphous indium–gallium–zinc oxide thin-film transistor (a-IGZO TFT)</topic><topic>CAD</topic><topic>Capacitance</topic><topic>Computer aided design</topic><topic>Density of states</topic><topic>Electrodes</topic><topic>Fabrication</topic><topic>Gallium</topic><topic>Indium gallium zinc oxide</topic><topic>Logic gates</topic><topic>low temperature</topic><topic>oxide semiconductors</topic><topic>Radio frequency</topic><topic>Schottky diodes</topic><topic>Simulation</topic><topic>source-gated transistors (SGTs)</topic><topic>Temperature dependence</topic><topic>Thin film transistors</topic><topic>thin-film transistors (TFTs)</topic><topic>Transistors</topic><topic>Wearable technology</topic><topic>Work functions</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sihapitak, Pongsakorn</creatorcontrib><creatorcontrib>Bermundo, Juan Paolo</creatorcontrib><creatorcontrib>Bestelink, Eva</creatorcontrib><creatorcontrib>Sporea, Radu A.</creatorcontrib><creatorcontrib>Uraoka, Yukiharu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sihapitak, Pongsakorn</au><au>Bermundo, Juan Paolo</au><au>Bestelink, Eva</au><au>Sporea, Radu A.</au><au>Uraoka, Yukiharu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing a-IGZO Source-Gated Transistor Current by Structure Alteration via TCAD Simulation and Experiment</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>71</volume><issue>4</issue><spage>2431</spage><epage>2437</epage><pages>2431-2437</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract><![CDATA[This study aims to increase the output current of the amorphous indium-gallium-zinc oxide (a-IGZO) source-gated transistor (SGT) through technology computer-aided design (TCAD) simulation and experiment. As SGT proves to be useful in various low-power applications and wearable devices, the low output current characteristics limit the adaptability of this structure. It is estimated that a higher output current level is achievable by optimizing this architecture while retaining fast saturation characteristics. The SGT structure simulations have been performed with adjusted density-of-states (DoS) parameters from experiments; this made TCAD simulation more realistic and can be used to predict the results of fabricated SGTs. The results from this study show that longer source-channel (SC) overlap and thinner channel is preferable; the SGT with longer SC overlap will result in the Mode II injection dominating over the Mode I injection. The Mode I injection occurs at the edge of source contact near the channel region, while the Mode II injection occurs at the bulk of the source at the farthest region from the channel. The result from the experiment shows that the fabricated SGT exhibits Mode II injection characteristics-that is the current will increase linearly with increasing gate voltage. From this study. it could be concluded that the SC overlap of <inline-formula> <tex-math notation="LaTeX">210~\mu \text{m} </tex-math></inline-formula> with a channel thickness of 20 nm and a channel length of <inline-formula> <tex-math notation="LaTeX">5~\mu \text{m} </tex-math></inline-formula> is the optimized structure that could provide high output current with little temperature dependence. Further improvement of the output current could be achieved by utilizing lower work function source metal.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2024.3360019</doi><tpages>7</tpages><orcidid>https://orcid.org/0009-0002-7384-061X</orcidid><orcidid>https://orcid.org/0000-0002-9575-6112</orcidid><orcidid>https://orcid.org/0000-0002-3759-3255</orcidid><orcidid>https://orcid.org/0000-0001-6145-9243</orcidid><orcidid>https://orcid.org/0000-0002-1319-3599</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2024-04, Vol.71 (4), p.2431-2437
issn 0018-9383
1557-9646
language eng
recordid cdi_crossref_primary_10_1109_TED_2024_3360019
source IEEE Electronic Library (IEL)
subjects Amorphous indium–gallium–zinc oxide thin-film transistor (a-IGZO TFT)
CAD
Capacitance
Computer aided design
Density of states
Electrodes
Fabrication
Gallium
Indium gallium zinc oxide
Logic gates
low temperature
oxide semiconductors
Radio frequency
Schottky diodes
Simulation
source-gated transistors (SGTs)
Temperature dependence
Thin film transistors
thin-film transistors (TFTs)
Transistors
Wearable technology
Work functions
Zinc oxide
title Optimizing a-IGZO Source-Gated Transistor Current by Structure Alteration via TCAD Simulation and Experiment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A47%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20a-IGZO%20Source-Gated%20Transistor%20Current%20by%20Structure%20Alteration%20via%20TCAD%20Simulation%20and%20Experiment&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Sihapitak,%20Pongsakorn&rft.date=2024-04-01&rft.volume=71&rft.issue=4&rft.spage=2431&rft.epage=2437&rft.pages=2431-2437&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2024.3360019&rft_dat=%3Cproquest_RIE%3E2994790443%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2994790443&rft_id=info:pmid/&rft_ieee_id=10443419&rfr_iscdi=true