Optimizing a-IGZO Source-Gated Transistor Current by Structure Alteration via TCAD Simulation and Experiment
This study aims to increase the output current of the amorphous indium-gallium-zinc oxide (a-IGZO) source-gated transistor (SGT) through technology computer-aided design (TCAD) simulation and experiment. As SGT proves to be useful in various low-power applications and wearable devices, the low outpu...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2024-04, Vol.71 (4), p.2431-2437 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2437 |
---|---|
container_issue | 4 |
container_start_page | 2431 |
container_title | IEEE transactions on electron devices |
container_volume | 71 |
creator | Sihapitak, Pongsakorn Bermundo, Juan Paolo Bestelink, Eva Sporea, Radu A. Uraoka, Yukiharu |
description | This study aims to increase the output current of the amorphous indium-gallium-zinc oxide (a-IGZO) source-gated transistor (SGT) through technology computer-aided design (TCAD) simulation and experiment. As SGT proves to be useful in various low-power applications and wearable devices, the low output current characteristics limit the adaptability of this structure. It is estimated that a higher output current level is achievable by optimizing this architecture while retaining fast saturation characteristics. The SGT structure simulations have been performed with adjusted density-of-states (DoS) parameters from experiments; this made TCAD simulation more realistic and can be used to predict the results of fabricated SGTs. The results from this study show that longer source-channel (SC) overlap and thinner channel is preferable; the SGT with longer SC overlap will result in the Mode II injection dominating over the Mode I injection. The Mode I injection occurs at the edge of source contact near the channel region, while the Mode II injection occurs at the bulk of the source at the farthest region from the channel. The result from the experiment shows that the fabricated SGT exhibits Mode II injection characteristics-that is the current will increase linearly with increasing gate voltage. From this study. it could be concluded that the SC overlap of 210~\mu \text{m} with a channel thickness of 20 nm and a channel length of 5~\mu \text{m} is the optimized structure that could provide high output current with little temperature dependence. Further improvement of the output current could be achieved by utilizing lower work function source metal. |
doi_str_mv | 10.1109/TED.2024.3360019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TED_2024_3360019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10443419</ieee_id><sourcerecordid>2994790443</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-4e9a29c4173419f853cc64772ceaf3aaacf52c04e916c216eedef7258a6f6ab23</originalsourceid><addsrcrecordid>eNpNUD1PwzAUtBBIlMLOwGCJOcVfceKxakupVKlDw8ISue4LcpUmwXYQ5dfjKh2Ynt7p7t69Q-iRkgmlRL0Ui_mEESYmnEtCqLpCI5qmWaKkkNdoFKE8UTznt-jO-0NcpRBshOpNF-zR_trmE-tktfzY4G3bOwPJUgfY48LpxlsfWodnvXPQBLw74W1wvQm9AzytAzgdbNvgb6txMZvO8dYe-3rAdLPHi58OnD1G6T26qXTt4eEyx-j9dVHM3pL1ZrmaTdeJYSINiQClmTKCZlxQVeUpN0aKLGMGdMW11qZKmSGRRqVhVALsocpYmmtZSb1jfIyeB9_OtV89-FAe4k9NPFkypUSmiBA8ssjAMq713kFVdjGmdqeSkvLcaRk7Lc-dlpdOo-RpkFgA-EePdjEp_wOcI3Nk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2994790443</pqid></control><display><type>article</type><title>Optimizing a-IGZO Source-Gated Transistor Current by Structure Alteration via TCAD Simulation and Experiment</title><source>IEEE Electronic Library (IEL)</source><creator>Sihapitak, Pongsakorn ; Bermundo, Juan Paolo ; Bestelink, Eva ; Sporea, Radu A. ; Uraoka, Yukiharu</creator><creatorcontrib>Sihapitak, Pongsakorn ; Bermundo, Juan Paolo ; Bestelink, Eva ; Sporea, Radu A. ; Uraoka, Yukiharu</creatorcontrib><description><![CDATA[This study aims to increase the output current of the amorphous indium-gallium-zinc oxide (a-IGZO) source-gated transistor (SGT) through technology computer-aided design (TCAD) simulation and experiment. As SGT proves to be useful in various low-power applications and wearable devices, the low output current characteristics limit the adaptability of this structure. It is estimated that a higher output current level is achievable by optimizing this architecture while retaining fast saturation characteristics. The SGT structure simulations have been performed with adjusted density-of-states (DoS) parameters from experiments; this made TCAD simulation more realistic and can be used to predict the results of fabricated SGTs. The results from this study show that longer source-channel (SC) overlap and thinner channel is preferable; the SGT with longer SC overlap will result in the Mode II injection dominating over the Mode I injection. The Mode I injection occurs at the edge of source contact near the channel region, while the Mode II injection occurs at the bulk of the source at the farthest region from the channel. The result from the experiment shows that the fabricated SGT exhibits Mode II injection characteristics-that is the current will increase linearly with increasing gate voltage. From this study. it could be concluded that the SC overlap of <inline-formula> <tex-math notation="LaTeX">210~\mu \text{m} </tex-math></inline-formula> with a channel thickness of 20 nm and a channel length of <inline-formula> <tex-math notation="LaTeX">5~\mu \text{m} </tex-math></inline-formula> is the optimized structure that could provide high output current with little temperature dependence. Further improvement of the output current could be achieved by utilizing lower work function source metal.]]></description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2024.3360019</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Amorphous indium–gallium–zinc oxide thin-film transistor (a-IGZO TFT) ; CAD ; Capacitance ; Computer aided design ; Density of states ; Electrodes ; Fabrication ; Gallium ; Indium gallium zinc oxide ; Logic gates ; low temperature ; oxide semiconductors ; Radio frequency ; Schottky diodes ; Simulation ; source-gated transistors (SGTs) ; Temperature dependence ; Thin film transistors ; thin-film transistors (TFTs) ; Transistors ; Wearable technology ; Work functions ; Zinc oxide</subject><ispartof>IEEE transactions on electron devices, 2024-04, Vol.71 (4), p.2431-2437</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-4e9a29c4173419f853cc64772ceaf3aaacf52c04e916c216eedef7258a6f6ab23</cites><orcidid>0009-0002-7384-061X ; 0000-0002-9575-6112 ; 0000-0002-3759-3255 ; 0000-0001-6145-9243 ; 0000-0002-1319-3599</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10443419$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10443419$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sihapitak, Pongsakorn</creatorcontrib><creatorcontrib>Bermundo, Juan Paolo</creatorcontrib><creatorcontrib>Bestelink, Eva</creatorcontrib><creatorcontrib>Sporea, Radu A.</creatorcontrib><creatorcontrib>Uraoka, Yukiharu</creatorcontrib><title>Optimizing a-IGZO Source-Gated Transistor Current by Structure Alteration via TCAD Simulation and Experiment</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description><![CDATA[This study aims to increase the output current of the amorphous indium-gallium-zinc oxide (a-IGZO) source-gated transistor (SGT) through technology computer-aided design (TCAD) simulation and experiment. As SGT proves to be useful in various low-power applications and wearable devices, the low output current characteristics limit the adaptability of this structure. It is estimated that a higher output current level is achievable by optimizing this architecture while retaining fast saturation characteristics. The SGT structure simulations have been performed with adjusted density-of-states (DoS) parameters from experiments; this made TCAD simulation more realistic and can be used to predict the results of fabricated SGTs. The results from this study show that longer source-channel (SC) overlap and thinner channel is preferable; the SGT with longer SC overlap will result in the Mode II injection dominating over the Mode I injection. The Mode I injection occurs at the edge of source contact near the channel region, while the Mode II injection occurs at the bulk of the source at the farthest region from the channel. The result from the experiment shows that the fabricated SGT exhibits Mode II injection characteristics-that is the current will increase linearly with increasing gate voltage. From this study. it could be concluded that the SC overlap of <inline-formula> <tex-math notation="LaTeX">210~\mu \text{m} </tex-math></inline-formula> with a channel thickness of 20 nm and a channel length of <inline-formula> <tex-math notation="LaTeX">5~\mu \text{m} </tex-math></inline-formula> is the optimized structure that could provide high output current with little temperature dependence. Further improvement of the output current could be achieved by utilizing lower work function source metal.]]></description><subject>Amorphous indium–gallium–zinc oxide thin-film transistor (a-IGZO TFT)</subject><subject>CAD</subject><subject>Capacitance</subject><subject>Computer aided design</subject><subject>Density of states</subject><subject>Electrodes</subject><subject>Fabrication</subject><subject>Gallium</subject><subject>Indium gallium zinc oxide</subject><subject>Logic gates</subject><subject>low temperature</subject><subject>oxide semiconductors</subject><subject>Radio frequency</subject><subject>Schottky diodes</subject><subject>Simulation</subject><subject>source-gated transistors (SGTs)</subject><subject>Temperature dependence</subject><subject>Thin film transistors</subject><subject>thin-film transistors (TFTs)</subject><subject>Transistors</subject><subject>Wearable technology</subject><subject>Work functions</subject><subject>Zinc oxide</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNUD1PwzAUtBBIlMLOwGCJOcVfceKxakupVKlDw8ISue4LcpUmwXYQ5dfjKh2Ynt7p7t69Q-iRkgmlRL0Ui_mEESYmnEtCqLpCI5qmWaKkkNdoFKE8UTznt-jO-0NcpRBshOpNF-zR_trmE-tktfzY4G3bOwPJUgfY48LpxlsfWodnvXPQBLw74W1wvQm9AzytAzgdbNvgb6txMZvO8dYe-3rAdLPHi58OnD1G6T26qXTt4eEyx-j9dVHM3pL1ZrmaTdeJYSINiQClmTKCZlxQVeUpN0aKLGMGdMW11qZKmSGRRqVhVALsocpYmmtZSb1jfIyeB9_OtV89-FAe4k9NPFkypUSmiBA8ssjAMq713kFVdjGmdqeSkvLcaRk7Lc-dlpdOo-RpkFgA-EePdjEp_wOcI3Nk</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Sihapitak, Pongsakorn</creator><creator>Bermundo, Juan Paolo</creator><creator>Bestelink, Eva</creator><creator>Sporea, Radu A.</creator><creator>Uraoka, Yukiharu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0002-7384-061X</orcidid><orcidid>https://orcid.org/0000-0002-9575-6112</orcidid><orcidid>https://orcid.org/0000-0002-3759-3255</orcidid><orcidid>https://orcid.org/0000-0001-6145-9243</orcidid><orcidid>https://orcid.org/0000-0002-1319-3599</orcidid></search><sort><creationdate>20240401</creationdate><title>Optimizing a-IGZO Source-Gated Transistor Current by Structure Alteration via TCAD Simulation and Experiment</title><author>Sihapitak, Pongsakorn ; Bermundo, Juan Paolo ; Bestelink, Eva ; Sporea, Radu A. ; Uraoka, Yukiharu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-4e9a29c4173419f853cc64772ceaf3aaacf52c04e916c216eedef7258a6f6ab23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Amorphous indium–gallium–zinc oxide thin-film transistor (a-IGZO TFT)</topic><topic>CAD</topic><topic>Capacitance</topic><topic>Computer aided design</topic><topic>Density of states</topic><topic>Electrodes</topic><topic>Fabrication</topic><topic>Gallium</topic><topic>Indium gallium zinc oxide</topic><topic>Logic gates</topic><topic>low temperature</topic><topic>oxide semiconductors</topic><topic>Radio frequency</topic><topic>Schottky diodes</topic><topic>Simulation</topic><topic>source-gated transistors (SGTs)</topic><topic>Temperature dependence</topic><topic>Thin film transistors</topic><topic>thin-film transistors (TFTs)</topic><topic>Transistors</topic><topic>Wearable technology</topic><topic>Work functions</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sihapitak, Pongsakorn</creatorcontrib><creatorcontrib>Bermundo, Juan Paolo</creatorcontrib><creatorcontrib>Bestelink, Eva</creatorcontrib><creatorcontrib>Sporea, Radu A.</creatorcontrib><creatorcontrib>Uraoka, Yukiharu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sihapitak, Pongsakorn</au><au>Bermundo, Juan Paolo</au><au>Bestelink, Eva</au><au>Sporea, Radu A.</au><au>Uraoka, Yukiharu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing a-IGZO Source-Gated Transistor Current by Structure Alteration via TCAD Simulation and Experiment</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>71</volume><issue>4</issue><spage>2431</spage><epage>2437</epage><pages>2431-2437</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract><![CDATA[This study aims to increase the output current of the amorphous indium-gallium-zinc oxide (a-IGZO) source-gated transistor (SGT) through technology computer-aided design (TCAD) simulation and experiment. As SGT proves to be useful in various low-power applications and wearable devices, the low output current characteristics limit the adaptability of this structure. It is estimated that a higher output current level is achievable by optimizing this architecture while retaining fast saturation characteristics. The SGT structure simulations have been performed with adjusted density-of-states (DoS) parameters from experiments; this made TCAD simulation more realistic and can be used to predict the results of fabricated SGTs. The results from this study show that longer source-channel (SC) overlap and thinner channel is preferable; the SGT with longer SC overlap will result in the Mode II injection dominating over the Mode I injection. The Mode I injection occurs at the edge of source contact near the channel region, while the Mode II injection occurs at the bulk of the source at the farthest region from the channel. The result from the experiment shows that the fabricated SGT exhibits Mode II injection characteristics-that is the current will increase linearly with increasing gate voltage. From this study. it could be concluded that the SC overlap of <inline-formula> <tex-math notation="LaTeX">210~\mu \text{m} </tex-math></inline-formula> with a channel thickness of 20 nm and a channel length of <inline-formula> <tex-math notation="LaTeX">5~\mu \text{m} </tex-math></inline-formula> is the optimized structure that could provide high output current with little temperature dependence. Further improvement of the output current could be achieved by utilizing lower work function source metal.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2024.3360019</doi><tpages>7</tpages><orcidid>https://orcid.org/0009-0002-7384-061X</orcidid><orcidid>https://orcid.org/0000-0002-9575-6112</orcidid><orcidid>https://orcid.org/0000-0002-3759-3255</orcidid><orcidid>https://orcid.org/0000-0001-6145-9243</orcidid><orcidid>https://orcid.org/0000-0002-1319-3599</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2024-04, Vol.71 (4), p.2431-2437 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TED_2024_3360019 |
source | IEEE Electronic Library (IEL) |
subjects | Amorphous indium–gallium–zinc oxide thin-film transistor (a-IGZO TFT) CAD Capacitance Computer aided design Density of states Electrodes Fabrication Gallium Indium gallium zinc oxide Logic gates low temperature oxide semiconductors Radio frequency Schottky diodes Simulation source-gated transistors (SGTs) Temperature dependence Thin film transistors thin-film transistors (TFTs) Transistors Wearable technology Work functions Zinc oxide |
title | Optimizing a-IGZO Source-Gated Transistor Current by Structure Alteration via TCAD Simulation and Experiment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A47%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20a-IGZO%20Source-Gated%20Transistor%20Current%20by%20Structure%20Alteration%20via%20TCAD%20Simulation%20and%20Experiment&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Sihapitak,%20Pongsakorn&rft.date=2024-04-01&rft.volume=71&rft.issue=4&rft.spage=2431&rft.epage=2437&rft.pages=2431-2437&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2024.3360019&rft_dat=%3Cproquest_RIE%3E2994790443%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2994790443&rft_id=info:pmid/&rft_ieee_id=10443419&rfr_iscdi=true |