Realization of Flexible Large-Sized GaInP/GaAs/InGaAs Solar Cells With Stable Low-Temperature Ohmic Contact Technique

In the case of the fabrication of flexible solar cells based on the inverted metamorphic multijunction (IMM) structure, the conventional high-temperature annealing will result in the thin-film epitaxial layer warp or even crack, which could seriously affect the yield of flexible solar cells. The poo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2023-08, Vol.70 (8), p.1-6
Hauptverfasser: Sun, Qiangjian, Long, Junhua, Wu, Xiaoxu, Chen, Zhitao, Wang, Xia, Li, Xuefei, Dai, Pan, Yu, Menglu, Luo, Xiaolong, Zhao, Huyin, Tan, Ming, Lu, Shulong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue 8
container_start_page 1
container_title IEEE transactions on electron devices
container_volume 70
creator Sun, Qiangjian
Long, Junhua
Wu, Xiaoxu
Chen, Zhitao
Wang, Xia
Li, Xuefei
Dai, Pan
Yu, Menglu
Luo, Xiaolong
Zhao, Huyin
Tan, Ming
Lu, Shulong
description In the case of the fabrication of flexible solar cells based on the inverted metamorphic multijunction (IMM) structure, the conventional high-temperature annealing will result in the thin-film epitaxial layer warp or even crack, which could seriously affect the yield of flexible solar cells. The poor device fabrication processing compatibility arises from the large difference in thermal expansion coefficients between the ultrathin epitaxial layer and the flexible substrate. In this work, we developed the PdGe electrode to achieve the specific contact resistivity of 3.4 \times 10 ^{-\text{6}} \Omega \cdot cm ^{\text{2}} with low-temperature annealing. Thermal cycle tests have demonstrated the ultrahigh stability of the ohmic contact performance. By the employment of the designed electrode, the flexible large-sized GaInP/GaAs/InGaAs solar cells were successfully fabricated with a conversion efficiency of 35.37% under the AM1.5G illumination. The encapsulated flexible solar cells can remain above 98% of initial performance under the circumstance of 85 ^{\circ} C and 85% relative humidity. The stable and reliable electrode based on low-temperature annealing technology will greatly improve the production yield in the preparation of flexible electronic devices.
doi_str_mv 10.1109/TED.2023.3289781
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TED_2023_3289781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10175190</ieee_id><sourcerecordid>3126948222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-ee444efee2eca9052be7b73d7cd3f02b2bb82e9580e5c6ffa7be1c386d97df63</originalsourceid><addsrcrecordid>eNpNkM9LwzAYhoMoOKd3Dx4CnrvlR9skx1HdHAwmruAxpOlXl9E1M-1Q99fbuR08vXzwPt8LD0L3lIwoJWqcPz-NGGF8xJlUQtILNKBJIiKVxuklGhBCZaS45Nfopm03_ZnGMRug_RuY2h1M53yDfYWnNXy7oga8MOEDopU7QIlnZt68jmdm0o7nzTHwytcm4AzqusXvrlvjVWf-KP8V5bDdQTDdPgBerrfO4sw3nbEdzsGuG_e5h1t0VZm6hbtzDlE-fc6zl2ixnM2zySKyTLEuAojjGCoABtYokrACRCF4KWzJK8IKVhSSgUokgcSmVWVEAdRymZZKlFXKh-jx9HYXfL_adnrj96HpFzWnLFWxZIz1LXJq2eDbNkCld8FtTfjRlOijW9271Ue3-uy2Rx5OiAOAf3UqEqoI_wViX3ZC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126948222</pqid></control><display><type>article</type><title>Realization of Flexible Large-Sized GaInP/GaAs/InGaAs Solar Cells With Stable Low-Temperature Ohmic Contact Technique</title><source>IEEE Electronic Library (IEL)</source><creator>Sun, Qiangjian ; Long, Junhua ; Wu, Xiaoxu ; Chen, Zhitao ; Wang, Xia ; Li, Xuefei ; Dai, Pan ; Yu, Menglu ; Luo, Xiaolong ; Zhao, Huyin ; Tan, Ming ; Lu, Shulong</creator><creatorcontrib>Sun, Qiangjian ; Long, Junhua ; Wu, Xiaoxu ; Chen, Zhitao ; Wang, Xia ; Li, Xuefei ; Dai, Pan ; Yu, Menglu ; Luo, Xiaolong ; Zhao, Huyin ; Tan, Ming ; Lu, Shulong</creatorcontrib><description><![CDATA[In the case of the fabrication of flexible solar cells based on the inverted metamorphic multijunction (IMM) structure, the conventional high-temperature annealing will result in the thin-film epitaxial layer warp or even crack, which could seriously affect the yield of flexible solar cells. The poor device fabrication processing compatibility arises from the large difference in thermal expansion coefficients between the ultrathin epitaxial layer and the flexible substrate. In this work, we developed the PdGe electrode to achieve the specific contact resistivity of 3.4 <inline-formula> <tex-math notation="LaTeX">\times</tex-math> </inline-formula> 10<inline-formula> <tex-math notation="LaTeX">^{-\text{6}}</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">\Omega \cdot</tex-math> </inline-formula>cm<inline-formula> <tex-math notation="LaTeX">^{\text{2}}</tex-math> </inline-formula> with low-temperature annealing. Thermal cycle tests have demonstrated the ultrahigh stability of the ohmic contact performance. By the employment of the designed electrode, the flexible large-sized GaInP/GaAs/InGaAs solar cells were successfully fabricated with a conversion efficiency of 35.37% under the AM1.5G illumination. The encapsulated flexible solar cells can remain above 98% of initial performance under the circumstance of 85 <inline-formula> <tex-math notation="LaTeX">^{\circ}</tex-math> </inline-formula>C and 85% relative humidity. The stable and reliable electrode based on low-temperature annealing technology will greatly improve the production yield in the preparation of flexible electronic devices.]]></description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2023.3289781</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Annealing ; Contact resistance ; Electrodes ; Flexible substrate ; Gallium arsenide ; Gallium indium phosphide ; Germanium ; High temperature ; Indium gallium arsenides ; large-sized solar cells ; Low temperature ; low-temperature annealing ; ohmic contact ; Ohmic contacts ; Photovoltaic cells ; Relative humidity ; Solar cells ; Substrates ; Thermal expansion ; Thin films</subject><ispartof>IEEE transactions on electron devices, 2023-08, Vol.70 (8), p.1-6</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-ee444efee2eca9052be7b73d7cd3f02b2bb82e9580e5c6ffa7be1c386d97df63</citedby><cites>FETCH-LOGICAL-c292t-ee444efee2eca9052be7b73d7cd3f02b2bb82e9580e5c6ffa7be1c386d97df63</cites><orcidid>0000-0001-8704-5268 ; 0000-0002-0251-6807</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10175190$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10175190$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sun, Qiangjian</creatorcontrib><creatorcontrib>Long, Junhua</creatorcontrib><creatorcontrib>Wu, Xiaoxu</creatorcontrib><creatorcontrib>Chen, Zhitao</creatorcontrib><creatorcontrib>Wang, Xia</creatorcontrib><creatorcontrib>Li, Xuefei</creatorcontrib><creatorcontrib>Dai, Pan</creatorcontrib><creatorcontrib>Yu, Menglu</creatorcontrib><creatorcontrib>Luo, Xiaolong</creatorcontrib><creatorcontrib>Zhao, Huyin</creatorcontrib><creatorcontrib>Tan, Ming</creatorcontrib><creatorcontrib>Lu, Shulong</creatorcontrib><title>Realization of Flexible Large-Sized GaInP/GaAs/InGaAs Solar Cells With Stable Low-Temperature Ohmic Contact Technique</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description><![CDATA[In the case of the fabrication of flexible solar cells based on the inverted metamorphic multijunction (IMM) structure, the conventional high-temperature annealing will result in the thin-film epitaxial layer warp or even crack, which could seriously affect the yield of flexible solar cells. The poor device fabrication processing compatibility arises from the large difference in thermal expansion coefficients between the ultrathin epitaxial layer and the flexible substrate. In this work, we developed the PdGe electrode to achieve the specific contact resistivity of 3.4 <inline-formula> <tex-math notation="LaTeX">\times</tex-math> </inline-formula> 10<inline-formula> <tex-math notation="LaTeX">^{-\text{6}}</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">\Omega \cdot</tex-math> </inline-formula>cm<inline-formula> <tex-math notation="LaTeX">^{\text{2}}</tex-math> </inline-formula> with low-temperature annealing. Thermal cycle tests have demonstrated the ultrahigh stability of the ohmic contact performance. By the employment of the designed electrode, the flexible large-sized GaInP/GaAs/InGaAs solar cells were successfully fabricated with a conversion efficiency of 35.37% under the AM1.5G illumination. The encapsulated flexible solar cells can remain above 98% of initial performance under the circumstance of 85 <inline-formula> <tex-math notation="LaTeX">^{\circ}</tex-math> </inline-formula>C and 85% relative humidity. The stable and reliable electrode based on low-temperature annealing technology will greatly improve the production yield in the preparation of flexible electronic devices.]]></description><subject>Annealing</subject><subject>Contact resistance</subject><subject>Electrodes</subject><subject>Flexible substrate</subject><subject>Gallium arsenide</subject><subject>Gallium indium phosphide</subject><subject>Germanium</subject><subject>High temperature</subject><subject>Indium gallium arsenides</subject><subject>large-sized solar cells</subject><subject>Low temperature</subject><subject>low-temperature annealing</subject><subject>ohmic contact</subject><subject>Ohmic contacts</subject><subject>Photovoltaic cells</subject><subject>Relative humidity</subject><subject>Solar cells</subject><subject>Substrates</subject><subject>Thermal expansion</subject><subject>Thin films</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM9LwzAYhoMoOKd3Dx4CnrvlR9skx1HdHAwmruAxpOlXl9E1M-1Q99fbuR08vXzwPt8LD0L3lIwoJWqcPz-NGGF8xJlUQtILNKBJIiKVxuklGhBCZaS45Nfopm03_ZnGMRug_RuY2h1M53yDfYWnNXy7oga8MOEDopU7QIlnZt68jmdm0o7nzTHwytcm4AzqusXvrlvjVWf-KP8V5bDdQTDdPgBerrfO4sw3nbEdzsGuG_e5h1t0VZm6hbtzDlE-fc6zl2ixnM2zySKyTLEuAojjGCoABtYokrACRCF4KWzJK8IKVhSSgUokgcSmVWVEAdRymZZKlFXKh-jx9HYXfL_adnrj96HpFzWnLFWxZIz1LXJq2eDbNkCld8FtTfjRlOijW9271Ue3-uy2Rx5OiAOAf3UqEqoI_wViX3ZC</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Sun, Qiangjian</creator><creator>Long, Junhua</creator><creator>Wu, Xiaoxu</creator><creator>Chen, Zhitao</creator><creator>Wang, Xia</creator><creator>Li, Xuefei</creator><creator>Dai, Pan</creator><creator>Yu, Menglu</creator><creator>Luo, Xiaolong</creator><creator>Zhao, Huyin</creator><creator>Tan, Ming</creator><creator>Lu, Shulong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8704-5268</orcidid><orcidid>https://orcid.org/0000-0002-0251-6807</orcidid></search><sort><creationdate>20230801</creationdate><title>Realization of Flexible Large-Sized GaInP/GaAs/InGaAs Solar Cells With Stable Low-Temperature Ohmic Contact Technique</title><author>Sun, Qiangjian ; Long, Junhua ; Wu, Xiaoxu ; Chen, Zhitao ; Wang, Xia ; Li, Xuefei ; Dai, Pan ; Yu, Menglu ; Luo, Xiaolong ; Zhao, Huyin ; Tan, Ming ; Lu, Shulong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-ee444efee2eca9052be7b73d7cd3f02b2bb82e9580e5c6ffa7be1c386d97df63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Annealing</topic><topic>Contact resistance</topic><topic>Electrodes</topic><topic>Flexible substrate</topic><topic>Gallium arsenide</topic><topic>Gallium indium phosphide</topic><topic>Germanium</topic><topic>High temperature</topic><topic>Indium gallium arsenides</topic><topic>large-sized solar cells</topic><topic>Low temperature</topic><topic>low-temperature annealing</topic><topic>ohmic contact</topic><topic>Ohmic contacts</topic><topic>Photovoltaic cells</topic><topic>Relative humidity</topic><topic>Solar cells</topic><topic>Substrates</topic><topic>Thermal expansion</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Qiangjian</creatorcontrib><creatorcontrib>Long, Junhua</creatorcontrib><creatorcontrib>Wu, Xiaoxu</creatorcontrib><creatorcontrib>Chen, Zhitao</creatorcontrib><creatorcontrib>Wang, Xia</creatorcontrib><creatorcontrib>Li, Xuefei</creatorcontrib><creatorcontrib>Dai, Pan</creatorcontrib><creatorcontrib>Yu, Menglu</creatorcontrib><creatorcontrib>Luo, Xiaolong</creatorcontrib><creatorcontrib>Zhao, Huyin</creatorcontrib><creatorcontrib>Tan, Ming</creatorcontrib><creatorcontrib>Lu, Shulong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sun, Qiangjian</au><au>Long, Junhua</au><au>Wu, Xiaoxu</au><au>Chen, Zhitao</au><au>Wang, Xia</au><au>Li, Xuefei</au><au>Dai, Pan</au><au>Yu, Menglu</au><au>Luo, Xiaolong</au><au>Zhao, Huyin</au><au>Tan, Ming</au><au>Lu, Shulong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Realization of Flexible Large-Sized GaInP/GaAs/InGaAs Solar Cells With Stable Low-Temperature Ohmic Contact Technique</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>70</volume><issue>8</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract><![CDATA[In the case of the fabrication of flexible solar cells based on the inverted metamorphic multijunction (IMM) structure, the conventional high-temperature annealing will result in the thin-film epitaxial layer warp or even crack, which could seriously affect the yield of flexible solar cells. The poor device fabrication processing compatibility arises from the large difference in thermal expansion coefficients between the ultrathin epitaxial layer and the flexible substrate. In this work, we developed the PdGe electrode to achieve the specific contact resistivity of 3.4 <inline-formula> <tex-math notation="LaTeX">\times</tex-math> </inline-formula> 10<inline-formula> <tex-math notation="LaTeX">^{-\text{6}}</tex-math> </inline-formula> <inline-formula> <tex-math notation="LaTeX">\Omega \cdot</tex-math> </inline-formula>cm<inline-formula> <tex-math notation="LaTeX">^{\text{2}}</tex-math> </inline-formula> with low-temperature annealing. Thermal cycle tests have demonstrated the ultrahigh stability of the ohmic contact performance. By the employment of the designed electrode, the flexible large-sized GaInP/GaAs/InGaAs solar cells were successfully fabricated with a conversion efficiency of 35.37% under the AM1.5G illumination. The encapsulated flexible solar cells can remain above 98% of initial performance under the circumstance of 85 <inline-formula> <tex-math notation="LaTeX">^{\circ}</tex-math> </inline-formula>C and 85% relative humidity. The stable and reliable electrode based on low-temperature annealing technology will greatly improve the production yield in the preparation of flexible electronic devices.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2023.3289781</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-8704-5268</orcidid><orcidid>https://orcid.org/0000-0002-0251-6807</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2023-08, Vol.70 (8), p.1-6
issn 0018-9383
1557-9646
language eng
recordid cdi_crossref_primary_10_1109_TED_2023_3289781
source IEEE Electronic Library (IEL)
subjects Annealing
Contact resistance
Electrodes
Flexible substrate
Gallium arsenide
Gallium indium phosphide
Germanium
High temperature
Indium gallium arsenides
large-sized solar cells
Low temperature
low-temperature annealing
ohmic contact
Ohmic contacts
Photovoltaic cells
Relative humidity
Solar cells
Substrates
Thermal expansion
Thin films
title Realization of Flexible Large-Sized GaInP/GaAs/InGaAs Solar Cells With Stable Low-Temperature Ohmic Contact Technique
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T08%3A56%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Realization%20of%20Flexible%20Large-Sized%20GaInP/GaAs/InGaAs%20Solar%20Cells%20With%20Stable%20Low-Temperature%20Ohmic%20Contact%20Technique&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Sun,%20Qiangjian&rft.date=2023-08-01&rft.volume=70&rft.issue=8&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2023.3289781&rft_dat=%3Cproquest_RIE%3E3126948222%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126948222&rft_id=info:pmid/&rft_ieee_id=10175190&rfr_iscdi=true