Organic Electrochemical Transistors (OECTs): Advancements and Exciting Prospects for Future Biosensing Applications

Over the past few decades, the field of organic electronics has depicted proliferated growth, due to the advantageous characteristics of organic semiconductors, such as tunability through synthetic chemistry, simplicity in processing, cost-effectiveness, and low-voltage operation, to cite a few. Org...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2023-07, Vol.70 (7), p.1-12
Hauptverfasser: Ajayan, J., Mohankumar, P., Mathew, Ribu, Thoutam, Laxman Raju, Kaushik, Brajesh Kumar, Nirmal, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 7
container_start_page 1
container_title IEEE transactions on electron devices
container_volume 70
creator Ajayan, J.
Mohankumar, P.
Mathew, Ribu
Thoutam, Laxman Raju
Kaushik, Brajesh Kumar
Nirmal, D.
description Over the past few decades, the field of organic electronics has depicted proliferated growth, due to the advantageous characteristics of organic semiconductors, such as tunability through synthetic chemistry, simplicity in processing, cost-effectiveness, and low-voltage operation, to cite a few. Organic electrochemical transistors (OECTs) have recently emerged as a highly promising technology in the area of biosensing and flexible electronics. OECT-based biosensors are capable of sensing brain activities, tissues, monitoring cells, hormones, DNAs, and glucose. Sensitivity, selectivity, and detection limit are the key parameters adopted for measuring the performance of OECT-based biosensors. This article highlights the advancements and exciting prospects of OECTs for future biosensing applications, such as cell-based biosensing, chemical sensing, DNA/ribonucleic acid (RNA) sensing, glucose sensing, immune sensing, ion sensing, and pH sensing. OECT-based biosensors outperform other conventional biosensors because of their excellent biocompatibility, high transconductance, and mixed electronic-ionic conductivity. At present, OECTs are fabricated and characterized in millimeter and micrometer dimensions, and miniaturizing their dimensions to nanoscale is the key challenge for utilizing them in the field of nanobioelectronics, nanomedicine, and nanobiosensing.
doi_str_mv 10.1109/TED.2023.3271960
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TED_2023_3271960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10122624</ieee_id><sourcerecordid>2828001104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-9b4e8c132d3d6fe8017241d0e32efb157c3eff8080800f4fd7c464019d6624373</originalsourceid><addsrcrecordid>eNpNkL1PwzAQxS0EEqWwMzBYYoEhxV_NB1spKSBVKkOYo9Q5F1etHWwHwX-Po3ZAN5xO99473Q-ha0omlJLioSqfJ4wwPuEso0VKTtCITqdZUqQiPUUjQmieFDzn5-jC-20cUyHYCPmV2zRGS1zuQAZn5SfstWx2uHKN8doH6zy-W5Xzyt8_4ln73RgJezDB48a0uPyROmizwe_O-i4meKysw4s-9A7wk7YeYkrcz7puF3ODtsZfojPV7DxcHfsYfSzKav6aLFcvb_PZMpGsYCEp1gJySTlreZsqyAnNmKAtAc5Arek0kxyUyslQRAnVZlKkgtCiTVMmeMbH6PaQ2zn71YMP9db2zsSTNctZNEVwIqrIQSXjC96Bqjun9437rSmpB7R1RFsPaOsj2mi5OVg0APyTU8aGy39XMnVP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2828001104</pqid></control><display><type>article</type><title>Organic Electrochemical Transistors (OECTs): Advancements and Exciting Prospects for Future Biosensing Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Ajayan, J. ; Mohankumar, P. ; Mathew, Ribu ; Thoutam, Laxman Raju ; Kaushik, Brajesh Kumar ; Nirmal, D.</creator><creatorcontrib>Ajayan, J. ; Mohankumar, P. ; Mathew, Ribu ; Thoutam, Laxman Raju ; Kaushik, Brajesh Kumar ; Nirmal, D.</creatorcontrib><description>Over the past few decades, the field of organic electronics has depicted proliferated growth, due to the advantageous characteristics of organic semiconductors, such as tunability through synthetic chemistry, simplicity in processing, cost-effectiveness, and low-voltage operation, to cite a few. Organic electrochemical transistors (OECTs) have recently emerged as a highly promising technology in the area of biosensing and flexible electronics. OECT-based biosensors are capable of sensing brain activities, tissues, monitoring cells, hormones, DNAs, and glucose. Sensitivity, selectivity, and detection limit are the key parameters adopted for measuring the performance of OECT-based biosensors. This article highlights the advancements and exciting prospects of OECTs for future biosensing applications, such as cell-based biosensing, chemical sensing, DNA/ribonucleic acid (RNA) sensing, glucose sensing, immune sensing, ion sensing, and pH sensing. OECT-based biosensors outperform other conventional biosensors because of their excellent biocompatibility, high transconductance, and mixed electronic-ionic conductivity. At present, OECTs are fabricated and characterized in millimeter and micrometer dimensions, and miniaturizing their dimensions to nanoscale is the key challenge for utilizing them in the field of nanobioelectronics, nanomedicine, and nanobiosensing.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2023.3271960</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>4-ethylenedioxythiophene) (PEDOT:PSS ; Biocompatibility ; Biosensors ; Cancer ; Conducting polymer ; covid-19 detection ; Electrodes ; Electronics ; Flexible components ; Glass ; Glucose ; Hormones ; Ion currents ; Logic gates ; microfluidics ; organic bioelectronics ; Organic semiconductors ; Parameter sensitivity ; poly(styrene-sulfonate)-doped-poly ; Polymers ; Ribonucleic acid ; RNA ; Sensors ; Transconductance ; Transistors</subject><ispartof>IEEE transactions on electron devices, 2023-07, Vol.70 (7), p.1-12</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-9b4e8c132d3d6fe8017241d0e32efb157c3eff8080800f4fd7c464019d6624373</citedby><cites>FETCH-LOGICAL-c292t-9b4e8c132d3d6fe8017241d0e32efb157c3eff8080800f4fd7c464019d6624373</cites><orcidid>0000-0002-2398-3690 ; 0000-0002-6414-0032 ; 0000-0002-9751-2816 ; 0000-0002-4107-8969 ; 0000-0003-0037-446X ; 0000-0003-1594-0911</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10122624$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10122624$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ajayan, J.</creatorcontrib><creatorcontrib>Mohankumar, P.</creatorcontrib><creatorcontrib>Mathew, Ribu</creatorcontrib><creatorcontrib>Thoutam, Laxman Raju</creatorcontrib><creatorcontrib>Kaushik, Brajesh Kumar</creatorcontrib><creatorcontrib>Nirmal, D.</creatorcontrib><title>Organic Electrochemical Transistors (OECTs): Advancements and Exciting Prospects for Future Biosensing Applications</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>Over the past few decades, the field of organic electronics has depicted proliferated growth, due to the advantageous characteristics of organic semiconductors, such as tunability through synthetic chemistry, simplicity in processing, cost-effectiveness, and low-voltage operation, to cite a few. Organic electrochemical transistors (OECTs) have recently emerged as a highly promising technology in the area of biosensing and flexible electronics. OECT-based biosensors are capable of sensing brain activities, tissues, monitoring cells, hormones, DNAs, and glucose. Sensitivity, selectivity, and detection limit are the key parameters adopted for measuring the performance of OECT-based biosensors. This article highlights the advancements and exciting prospects of OECTs for future biosensing applications, such as cell-based biosensing, chemical sensing, DNA/ribonucleic acid (RNA) sensing, glucose sensing, immune sensing, ion sensing, and pH sensing. OECT-based biosensors outperform other conventional biosensors because of their excellent biocompatibility, high transconductance, and mixed electronic-ionic conductivity. At present, OECTs are fabricated and characterized in millimeter and micrometer dimensions, and miniaturizing their dimensions to nanoscale is the key challenge for utilizing them in the field of nanobioelectronics, nanomedicine, and nanobiosensing.</description><subject>4-ethylenedioxythiophene) (PEDOT:PSS</subject><subject>Biocompatibility</subject><subject>Biosensors</subject><subject>Cancer</subject><subject>Conducting polymer</subject><subject>covid-19 detection</subject><subject>Electrodes</subject><subject>Electronics</subject><subject>Flexible components</subject><subject>Glass</subject><subject>Glucose</subject><subject>Hormones</subject><subject>Ion currents</subject><subject>Logic gates</subject><subject>microfluidics</subject><subject>organic bioelectronics</subject><subject>Organic semiconductors</subject><subject>Parameter sensitivity</subject><subject>poly(styrene-sulfonate)-doped-poly</subject><subject>Polymers</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Sensors</subject><subject>Transconductance</subject><subject>Transistors</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkL1PwzAQxS0EEqWwMzBYYoEhxV_NB1spKSBVKkOYo9Q5F1etHWwHwX-Po3ZAN5xO99473Q-ha0omlJLioSqfJ4wwPuEso0VKTtCITqdZUqQiPUUjQmieFDzn5-jC-20cUyHYCPmV2zRGS1zuQAZn5SfstWx2uHKN8doH6zy-W5Xzyt8_4ln73RgJezDB48a0uPyROmizwe_O-i4meKysw4s-9A7wk7YeYkrcz7puF3ODtsZfojPV7DxcHfsYfSzKav6aLFcvb_PZMpGsYCEp1gJySTlreZsqyAnNmKAtAc5Arek0kxyUyslQRAnVZlKkgtCiTVMmeMbH6PaQ2zn71YMP9db2zsSTNctZNEVwIqrIQSXjC96Bqjun9437rSmpB7R1RFsPaOsj2mi5OVg0APyTU8aGy39XMnVP</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Ajayan, J.</creator><creator>Mohankumar, P.</creator><creator>Mathew, Ribu</creator><creator>Thoutam, Laxman Raju</creator><creator>Kaushik, Brajesh Kumar</creator><creator>Nirmal, D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2398-3690</orcidid><orcidid>https://orcid.org/0000-0002-6414-0032</orcidid><orcidid>https://orcid.org/0000-0002-9751-2816</orcidid><orcidid>https://orcid.org/0000-0002-4107-8969</orcidid><orcidid>https://orcid.org/0000-0003-0037-446X</orcidid><orcidid>https://orcid.org/0000-0003-1594-0911</orcidid></search><sort><creationdate>20230701</creationdate><title>Organic Electrochemical Transistors (OECTs): Advancements and Exciting Prospects for Future Biosensing Applications</title><author>Ajayan, J. ; Mohankumar, P. ; Mathew, Ribu ; Thoutam, Laxman Raju ; Kaushik, Brajesh Kumar ; Nirmal, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-9b4e8c132d3d6fe8017241d0e32efb157c3eff8080800f4fd7c464019d6624373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>4-ethylenedioxythiophene) (PEDOT:PSS</topic><topic>Biocompatibility</topic><topic>Biosensors</topic><topic>Cancer</topic><topic>Conducting polymer</topic><topic>covid-19 detection</topic><topic>Electrodes</topic><topic>Electronics</topic><topic>Flexible components</topic><topic>Glass</topic><topic>Glucose</topic><topic>Hormones</topic><topic>Ion currents</topic><topic>Logic gates</topic><topic>microfluidics</topic><topic>organic bioelectronics</topic><topic>Organic semiconductors</topic><topic>Parameter sensitivity</topic><topic>poly(styrene-sulfonate)-doped-poly</topic><topic>Polymers</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Sensors</topic><topic>Transconductance</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ajayan, J.</creatorcontrib><creatorcontrib>Mohankumar, P.</creatorcontrib><creatorcontrib>Mathew, Ribu</creatorcontrib><creatorcontrib>Thoutam, Laxman Raju</creatorcontrib><creatorcontrib>Kaushik, Brajesh Kumar</creatorcontrib><creatorcontrib>Nirmal, D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ajayan, J.</au><au>Mohankumar, P.</au><au>Mathew, Ribu</au><au>Thoutam, Laxman Raju</au><au>Kaushik, Brajesh Kumar</au><au>Nirmal, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Organic Electrochemical Transistors (OECTs): Advancements and Exciting Prospects for Future Biosensing Applications</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>70</volume><issue>7</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>Over the past few decades, the field of organic electronics has depicted proliferated growth, due to the advantageous characteristics of organic semiconductors, such as tunability through synthetic chemistry, simplicity in processing, cost-effectiveness, and low-voltage operation, to cite a few. Organic electrochemical transistors (OECTs) have recently emerged as a highly promising technology in the area of biosensing and flexible electronics. OECT-based biosensors are capable of sensing brain activities, tissues, monitoring cells, hormones, DNAs, and glucose. Sensitivity, selectivity, and detection limit are the key parameters adopted for measuring the performance of OECT-based biosensors. This article highlights the advancements and exciting prospects of OECTs for future biosensing applications, such as cell-based biosensing, chemical sensing, DNA/ribonucleic acid (RNA) sensing, glucose sensing, immune sensing, ion sensing, and pH sensing. OECT-based biosensors outperform other conventional biosensors because of their excellent biocompatibility, high transconductance, and mixed electronic-ionic conductivity. At present, OECTs are fabricated and characterized in millimeter and micrometer dimensions, and miniaturizing their dimensions to nanoscale is the key challenge for utilizing them in the field of nanobioelectronics, nanomedicine, and nanobiosensing.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2023.3271960</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2398-3690</orcidid><orcidid>https://orcid.org/0000-0002-6414-0032</orcidid><orcidid>https://orcid.org/0000-0002-9751-2816</orcidid><orcidid>https://orcid.org/0000-0002-4107-8969</orcidid><orcidid>https://orcid.org/0000-0003-0037-446X</orcidid><orcidid>https://orcid.org/0000-0003-1594-0911</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2023-07, Vol.70 (7), p.1-12
issn 0018-9383
1557-9646
language eng
recordid cdi_crossref_primary_10_1109_TED_2023_3271960
source IEEE Electronic Library (IEL)
subjects 4-ethylenedioxythiophene) (PEDOT:PSS
Biocompatibility
Biosensors
Cancer
Conducting polymer
covid-19 detection
Electrodes
Electronics
Flexible components
Glass
Glucose
Hormones
Ion currents
Logic gates
microfluidics
organic bioelectronics
Organic semiconductors
Parameter sensitivity
poly(styrene-sulfonate)-doped-poly
Polymers
Ribonucleic acid
RNA
Sensors
Transconductance
Transistors
title Organic Electrochemical Transistors (OECTs): Advancements and Exciting Prospects for Future Biosensing Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A35%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Organic%20Electrochemical%20Transistors%20(OECTs):%20Advancements%20and%20Exciting%20Prospects%20for%20Future%20Biosensing%20Applications&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Ajayan,%20J.&rft.date=2023-07-01&rft.volume=70&rft.issue=7&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2023.3271960&rft_dat=%3Cproquest_RIE%3E2828001104%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2828001104&rft_id=info:pmid/&rft_ieee_id=10122624&rfr_iscdi=true