Organic Electrochemical Transistors (OECTs): Advancements and Exciting Prospects for Future Biosensing Applications
Over the past few decades, the field of organic electronics has depicted proliferated growth, due to the advantageous characteristics of organic semiconductors, such as tunability through synthetic chemistry, simplicity in processing, cost-effectiveness, and low-voltage operation, to cite a few. Org...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2023-07, Vol.70 (7), p.1-12 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | 7 |
container_start_page | 1 |
container_title | IEEE transactions on electron devices |
container_volume | 70 |
creator | Ajayan, J. Mohankumar, P. Mathew, Ribu Thoutam, Laxman Raju Kaushik, Brajesh Kumar Nirmal, D. |
description | Over the past few decades, the field of organic electronics has depicted proliferated growth, due to the advantageous characteristics of organic semiconductors, such as tunability through synthetic chemistry, simplicity in processing, cost-effectiveness, and low-voltage operation, to cite a few. Organic electrochemical transistors (OECTs) have recently emerged as a highly promising technology in the area of biosensing and flexible electronics. OECT-based biosensors are capable of sensing brain activities, tissues, monitoring cells, hormones, DNAs, and glucose. Sensitivity, selectivity, and detection limit are the key parameters adopted for measuring the performance of OECT-based biosensors. This article highlights the advancements and exciting prospects of OECTs for future biosensing applications, such as cell-based biosensing, chemical sensing, DNA/ribonucleic acid (RNA) sensing, glucose sensing, immune sensing, ion sensing, and pH sensing. OECT-based biosensors outperform other conventional biosensors because of their excellent biocompatibility, high transconductance, and mixed electronic-ionic conductivity. At present, OECTs are fabricated and characterized in millimeter and micrometer dimensions, and miniaturizing their dimensions to nanoscale is the key challenge for utilizing them in the field of nanobioelectronics, nanomedicine, and nanobiosensing. |
doi_str_mv | 10.1109/TED.2023.3271960 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TED_2023_3271960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10122624</ieee_id><sourcerecordid>2828001104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-9b4e8c132d3d6fe8017241d0e32efb157c3eff8080800f4fd7c464019d6624373</originalsourceid><addsrcrecordid>eNpNkL1PwzAQxS0EEqWwMzBYYoEhxV_NB1spKSBVKkOYo9Q5F1etHWwHwX-Po3ZAN5xO99473Q-ha0omlJLioSqfJ4wwPuEso0VKTtCITqdZUqQiPUUjQmieFDzn5-jC-20cUyHYCPmV2zRGS1zuQAZn5SfstWx2uHKN8doH6zy-W5Xzyt8_4ln73RgJezDB48a0uPyROmizwe_O-i4meKysw4s-9A7wk7YeYkrcz7puF3ODtsZfojPV7DxcHfsYfSzKav6aLFcvb_PZMpGsYCEp1gJySTlreZsqyAnNmKAtAc5Arek0kxyUyslQRAnVZlKkgtCiTVMmeMbH6PaQ2zn71YMP9db2zsSTNctZNEVwIqrIQSXjC96Bqjun9437rSmpB7R1RFsPaOsj2mi5OVg0APyTU8aGy39XMnVP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2828001104</pqid></control><display><type>article</type><title>Organic Electrochemical Transistors (OECTs): Advancements and Exciting Prospects for Future Biosensing Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Ajayan, J. ; Mohankumar, P. ; Mathew, Ribu ; Thoutam, Laxman Raju ; Kaushik, Brajesh Kumar ; Nirmal, D.</creator><creatorcontrib>Ajayan, J. ; Mohankumar, P. ; Mathew, Ribu ; Thoutam, Laxman Raju ; Kaushik, Brajesh Kumar ; Nirmal, D.</creatorcontrib><description>Over the past few decades, the field of organic electronics has depicted proliferated growth, due to the advantageous characteristics of organic semiconductors, such as tunability through synthetic chemistry, simplicity in processing, cost-effectiveness, and low-voltage operation, to cite a few. Organic electrochemical transistors (OECTs) have recently emerged as a highly promising technology in the area of biosensing and flexible electronics. OECT-based biosensors are capable of sensing brain activities, tissues, monitoring cells, hormones, DNAs, and glucose. Sensitivity, selectivity, and detection limit are the key parameters adopted for measuring the performance of OECT-based biosensors. This article highlights the advancements and exciting prospects of OECTs for future biosensing applications, such as cell-based biosensing, chemical sensing, DNA/ribonucleic acid (RNA) sensing, glucose sensing, immune sensing, ion sensing, and pH sensing. OECT-based biosensors outperform other conventional biosensors because of their excellent biocompatibility, high transconductance, and mixed electronic-ionic conductivity. At present, OECTs are fabricated and characterized in millimeter and micrometer dimensions, and miniaturizing their dimensions to nanoscale is the key challenge for utilizing them in the field of nanobioelectronics, nanomedicine, and nanobiosensing.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2023.3271960</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>4-ethylenedioxythiophene) (PEDOT:PSS ; Biocompatibility ; Biosensors ; Cancer ; Conducting polymer ; covid-19 detection ; Electrodes ; Electronics ; Flexible components ; Glass ; Glucose ; Hormones ; Ion currents ; Logic gates ; microfluidics ; organic bioelectronics ; Organic semiconductors ; Parameter sensitivity ; poly(styrene-sulfonate)-doped-poly ; Polymers ; Ribonucleic acid ; RNA ; Sensors ; Transconductance ; Transistors</subject><ispartof>IEEE transactions on electron devices, 2023-07, Vol.70 (7), p.1-12</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-9b4e8c132d3d6fe8017241d0e32efb157c3eff8080800f4fd7c464019d6624373</citedby><cites>FETCH-LOGICAL-c292t-9b4e8c132d3d6fe8017241d0e32efb157c3eff8080800f4fd7c464019d6624373</cites><orcidid>0000-0002-2398-3690 ; 0000-0002-6414-0032 ; 0000-0002-9751-2816 ; 0000-0002-4107-8969 ; 0000-0003-0037-446X ; 0000-0003-1594-0911</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10122624$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10122624$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ajayan, J.</creatorcontrib><creatorcontrib>Mohankumar, P.</creatorcontrib><creatorcontrib>Mathew, Ribu</creatorcontrib><creatorcontrib>Thoutam, Laxman Raju</creatorcontrib><creatorcontrib>Kaushik, Brajesh Kumar</creatorcontrib><creatorcontrib>Nirmal, D.</creatorcontrib><title>Organic Electrochemical Transistors (OECTs): Advancements and Exciting Prospects for Future Biosensing Applications</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>Over the past few decades, the field of organic electronics has depicted proliferated growth, due to the advantageous characteristics of organic semiconductors, such as tunability through synthetic chemistry, simplicity in processing, cost-effectiveness, and low-voltage operation, to cite a few. Organic electrochemical transistors (OECTs) have recently emerged as a highly promising technology in the area of biosensing and flexible electronics. OECT-based biosensors are capable of sensing brain activities, tissues, monitoring cells, hormones, DNAs, and glucose. Sensitivity, selectivity, and detection limit are the key parameters adopted for measuring the performance of OECT-based biosensors. This article highlights the advancements and exciting prospects of OECTs for future biosensing applications, such as cell-based biosensing, chemical sensing, DNA/ribonucleic acid (RNA) sensing, glucose sensing, immune sensing, ion sensing, and pH sensing. OECT-based biosensors outperform other conventional biosensors because of their excellent biocompatibility, high transconductance, and mixed electronic-ionic conductivity. At present, OECTs are fabricated and characterized in millimeter and micrometer dimensions, and miniaturizing their dimensions to nanoscale is the key challenge for utilizing them in the field of nanobioelectronics, nanomedicine, and nanobiosensing.</description><subject>4-ethylenedioxythiophene) (PEDOT:PSS</subject><subject>Biocompatibility</subject><subject>Biosensors</subject><subject>Cancer</subject><subject>Conducting polymer</subject><subject>covid-19 detection</subject><subject>Electrodes</subject><subject>Electronics</subject><subject>Flexible components</subject><subject>Glass</subject><subject>Glucose</subject><subject>Hormones</subject><subject>Ion currents</subject><subject>Logic gates</subject><subject>microfluidics</subject><subject>organic bioelectronics</subject><subject>Organic semiconductors</subject><subject>Parameter sensitivity</subject><subject>poly(styrene-sulfonate)-doped-poly</subject><subject>Polymers</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Sensors</subject><subject>Transconductance</subject><subject>Transistors</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkL1PwzAQxS0EEqWwMzBYYoEhxV_NB1spKSBVKkOYo9Q5F1etHWwHwX-Po3ZAN5xO99473Q-ha0omlJLioSqfJ4wwPuEso0VKTtCITqdZUqQiPUUjQmieFDzn5-jC-20cUyHYCPmV2zRGS1zuQAZn5SfstWx2uHKN8doH6zy-W5Xzyt8_4ln73RgJezDB48a0uPyROmizwe_O-i4meKysw4s-9A7wk7YeYkrcz7puF3ODtsZfojPV7DxcHfsYfSzKav6aLFcvb_PZMpGsYCEp1gJySTlreZsqyAnNmKAtAc5Arek0kxyUyslQRAnVZlKkgtCiTVMmeMbH6PaQ2zn71YMP9db2zsSTNctZNEVwIqrIQSXjC96Bqjun9437rSmpB7R1RFsPaOsj2mi5OVg0APyTU8aGy39XMnVP</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Ajayan, J.</creator><creator>Mohankumar, P.</creator><creator>Mathew, Ribu</creator><creator>Thoutam, Laxman Raju</creator><creator>Kaushik, Brajesh Kumar</creator><creator>Nirmal, D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2398-3690</orcidid><orcidid>https://orcid.org/0000-0002-6414-0032</orcidid><orcidid>https://orcid.org/0000-0002-9751-2816</orcidid><orcidid>https://orcid.org/0000-0002-4107-8969</orcidid><orcidid>https://orcid.org/0000-0003-0037-446X</orcidid><orcidid>https://orcid.org/0000-0003-1594-0911</orcidid></search><sort><creationdate>20230701</creationdate><title>Organic Electrochemical Transistors (OECTs): Advancements and Exciting Prospects for Future Biosensing Applications</title><author>Ajayan, J. ; Mohankumar, P. ; Mathew, Ribu ; Thoutam, Laxman Raju ; Kaushik, Brajesh Kumar ; Nirmal, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-9b4e8c132d3d6fe8017241d0e32efb157c3eff8080800f4fd7c464019d6624373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>4-ethylenedioxythiophene) (PEDOT:PSS</topic><topic>Biocompatibility</topic><topic>Biosensors</topic><topic>Cancer</topic><topic>Conducting polymer</topic><topic>covid-19 detection</topic><topic>Electrodes</topic><topic>Electronics</topic><topic>Flexible components</topic><topic>Glass</topic><topic>Glucose</topic><topic>Hormones</topic><topic>Ion currents</topic><topic>Logic gates</topic><topic>microfluidics</topic><topic>organic bioelectronics</topic><topic>Organic semiconductors</topic><topic>Parameter sensitivity</topic><topic>poly(styrene-sulfonate)-doped-poly</topic><topic>Polymers</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Sensors</topic><topic>Transconductance</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ajayan, J.</creatorcontrib><creatorcontrib>Mohankumar, P.</creatorcontrib><creatorcontrib>Mathew, Ribu</creatorcontrib><creatorcontrib>Thoutam, Laxman Raju</creatorcontrib><creatorcontrib>Kaushik, Brajesh Kumar</creatorcontrib><creatorcontrib>Nirmal, D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ajayan, J.</au><au>Mohankumar, P.</au><au>Mathew, Ribu</au><au>Thoutam, Laxman Raju</au><au>Kaushik, Brajesh Kumar</au><au>Nirmal, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Organic Electrochemical Transistors (OECTs): Advancements and Exciting Prospects for Future Biosensing Applications</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2023-07-01</date><risdate>2023</risdate><volume>70</volume><issue>7</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>Over the past few decades, the field of organic electronics has depicted proliferated growth, due to the advantageous characteristics of organic semiconductors, such as tunability through synthetic chemistry, simplicity in processing, cost-effectiveness, and low-voltage operation, to cite a few. Organic electrochemical transistors (OECTs) have recently emerged as a highly promising technology in the area of biosensing and flexible electronics. OECT-based biosensors are capable of sensing brain activities, tissues, monitoring cells, hormones, DNAs, and glucose. Sensitivity, selectivity, and detection limit are the key parameters adopted for measuring the performance of OECT-based biosensors. This article highlights the advancements and exciting prospects of OECTs for future biosensing applications, such as cell-based biosensing, chemical sensing, DNA/ribonucleic acid (RNA) sensing, glucose sensing, immune sensing, ion sensing, and pH sensing. OECT-based biosensors outperform other conventional biosensors because of their excellent biocompatibility, high transconductance, and mixed electronic-ionic conductivity. At present, OECTs are fabricated and characterized in millimeter and micrometer dimensions, and miniaturizing their dimensions to nanoscale is the key challenge for utilizing them in the field of nanobioelectronics, nanomedicine, and nanobiosensing.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2023.3271960</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2398-3690</orcidid><orcidid>https://orcid.org/0000-0002-6414-0032</orcidid><orcidid>https://orcid.org/0000-0002-9751-2816</orcidid><orcidid>https://orcid.org/0000-0002-4107-8969</orcidid><orcidid>https://orcid.org/0000-0003-0037-446X</orcidid><orcidid>https://orcid.org/0000-0003-1594-0911</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2023-07, Vol.70 (7), p.1-12 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TED_2023_3271960 |
source | IEEE Electronic Library (IEL) |
subjects | 4-ethylenedioxythiophene) (PEDOT:PSS Biocompatibility Biosensors Cancer Conducting polymer covid-19 detection Electrodes Electronics Flexible components Glass Glucose Hormones Ion currents Logic gates microfluidics organic bioelectronics Organic semiconductors Parameter sensitivity poly(styrene-sulfonate)-doped-poly Polymers Ribonucleic acid RNA Sensors Transconductance Transistors |
title | Organic Electrochemical Transistors (OECTs): Advancements and Exciting Prospects for Future Biosensing Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A35%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Organic%20Electrochemical%20Transistors%20(OECTs):%20Advancements%20and%20Exciting%20Prospects%20for%20Future%20Biosensing%20Applications&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Ajayan,%20J.&rft.date=2023-07-01&rft.volume=70&rft.issue=7&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2023.3271960&rft_dat=%3Cproquest_RIE%3E2828001104%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2828001104&rft_id=info:pmid/&rft_ieee_id=10122624&rfr_iscdi=true |